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Abstract: Chitosan has been extensively studied as a genetic drug delivery platform. However,
its efficiency is limited by the strength of DNA and RNA binding. Expecting a reduced binding
strength of cargo with chitosan, we proposed including heparin as a competing polyanion in the
polyplexes. We developed chitosan–heparin nanoparticles by a one-step process for the local delivery
of oligonucleotides. The size of the polyplexes was dependent on the mass ratio of polycation
to polyanion. The mechanism of oligonucleotide release was pH-dependent and associated with
polyplex swelling and collapse of the polysaccharide network. Inclusion of heparin enhanced
the oligonucleotide release from the chitosan-based polyplexes. Furthermore, heparin reduced
the toxicity of polyplexes in the cultured cells. The cell uptake of chitosan–heparin polyplexes
was equal to that of chitosan polyplexes, but heparin increased the transfection efficiency of the
polyplexes two-fold. The application of chitosan–heparin small interfering RNA (siRNA) targeted
to vascular endothelial growth factor (VEGF) silencing of ARPE-19 cells was 25% higher. Overall,
chitosan–heparin polyplexes showed a significant improvement of gene release inside the cells,
transfection, and gene silencing efficiency in vitro, suggesting that this fundamental strategy can
further improve the transfection efficiency with application of non-viral vectors.
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1. Introduction

Progress in the field of gene medicine has been stimulated by basic research of novel vectors for
DNA, RNA, and oligonucleotides. The use of different nucleotide-based therapeutics (e.g., siRNA,
messenger RNA (mRNA), and plasmid DNA (pDNA)) is an important strategy in future treatment
of diseases [1]. The cellular mechanisms of listed therapeutic agents are extremely different, with
structural advantages [2]. Nevertheless, it is important to find an effective delivery system for genetic
medicines to obtain high therapeutic efficiency in the cell.

Cationic biopolymers have been frequently used as a nano-carriers for siRNA and pDNA delivery
because they effectively complex the anionic polynucleotides, protect them from degradation and
improve their cellular uptake [3]. The colloidal vesicles of hydrophilic natural polymers, such as chitosan
and its derivatives, represent a promising class of such biopolymers [4–6]. Chitosan is water-soluble
and positively charged polymer with pKa of 6.0. It forms pH-sensitive nano-sized hydrogels that may
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enable pH-triggered release siRNA or pDNA in the acidic medium of endosomes [7,8]. The positive
charges of chitosan can be used to form colloidal nanoparticles via electrostatic interactions with
polyanions and to promote their internalization into the cells. Moreover, chitosan adheres to mucosal
surfaces [9] and enhances the epithelial penetration by opening tight-junctions, which is key to
overcoming the skin barrier [10]. In addition, chitosan is metabolized by certain human enzymes [11]
and it is considered a biocompatible polymer with low toxicity [12].

Numerous excellent reviews and regular articles on the potential of chitosan for pharmaceutical
applications have been published recently [13–16]. Despite the great potential of chitosan [13], its
efficiency for delivering different types of oligo- and polynucleotides strongly depends on the N/P
(amino groups of polycation to phosphate groups of polyanion) ratio, molecular structure, size, and
shape of the complexes. High N/P ratios in the complexes lead to high stability of the polyplexes that
prevents release of the cargo within the cells and precludes translation of DNA or RNA action [15,16].
To address this issue, we incorporated heparin as a stronger polyanionic competitor for polynucleotides.

Alternative polyplexes with other polyanions, such as sodium alginate [17] and hyaluronic
acid [18], have already been published as tools for improved gene delivery into epithelial cells. Sodium
alginate and hyaluronic acid have a gelling behavior, high molecular weight, and broad molecular
weight distribution, which can lead to aggregation and reduced stability of the particles. Heparin is
biocompatible and mucoadhesive biopolymer with comparatively low molecular mass (12–14 kDa),
non-gelling behavior, and stronger acidic sulfate groups. Thus, we propose that heparin could be more
effective competitive polyanion for improved RNA or DNA release from the polyplexes.

The formulations based on chitosan–heparin nanoparticles were previously described [19,20].
In one study [19], chitosan–heparin particles were used for bovine serum albumin (BSA) delivery.
The physico-chemical properties of such formulations, namely, size, pH-sensitivity, zeta-potential, and
entrapment efficiency of BSA were described. In another study, the immobilization of VEGF-loaded
chitosan–heparin nanoparticles on the scaffolds for tissue-engineering was performed [20]. This significantly
increased fibroblast infiltration, extracellular matrix production, and accelerated in vivo vascularization in
a mouse subcutaneous implantation model. Thus, the application of chitosan–heparin carriers as a highly
biocompatible and effective delivery system represents a promising approach for genetic drug delivery
into the cells.

In this work we developed pH-sensitive chitosan–heparin nanoparticles and investigated the effect
of different chitosan/heparin ratios on pH, particle size and structure, zeta potential, and encapsulation
efficiency of model oligonucleotide. Next, we studied the release mechanisms of model oligonucleotide
and proved the biocompatibility of the drug delivery system with primary normal human keratinocytes
(NHKs). Finally, we unraveled specific role of competitive polyanion heparin in the complex and
showed the advances of chitosan–heparin nanocarrier to deliver plasmid DNA and VEGF silencing
RNA to epithelial cells.

2. Materials and Methods

2.1. Materials

Polymers for nanoparticle preparation include chitosan (deacetylation degree 75–85%, medium
molecular weight; Sigma Aldrich, Schnelldorf, Germany) and heparin (MW 12–14 kDa; AppliChem,
Darmstadt, Germany). Model Cy3-labeled and non-labeled oligothymidine and oligoadenine (23 base
pairs oligo-dT-dA) were purchased from BiobeagleTM (Saint-Petersburg, Russia).

The reporter gene plasmid encoding green fluorescent protein (pEGFP-C2) was a generous gift
from Prof. Arto Urtti (University of Eastern Finland, Kuopio, Finland). pEGFP-C2 was transformed
into Escherichia coli XL1-Blue (Evrogen, Moscow, Russia) and purified using the Plasmid Miniprep
purification kit (Evrogen, Moscow, Russia). DNA concentration was quantified by the measurement
of UV absorbance at 260 nm using a Nanodrop 2000c spectrophotometer (Thermo Fischer Scientific,
Vantaa, Finland). The purity of the plasmid was verified by gel electrophoresis (1% agarose gel).
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The 27-base pairs (bp) double stranded (ds) RNA (sense and antisense strands) were
designed as targets to the vascular endothelial growth factor gene (sense: 5′-CUUCCUACAGCAC
AACAAAUGUGAAUG-3′, antisense: 3′GAAGGAUGUCGUGUUGUUUACACUUAC-5′). For
visualization, Cy5-labeled (5′-modification) 27-bp VEGF siRNA were used. Cy5-labeled and non-labeled
27-bp ds VEGF siRNAs and scrambled 27-bp RNA (siC) (sense 5′-GUAAGUGUAAACAACACGA
CAUCCUUC-3′, antisense: 3′-CAUUCACAUUUG UUGUGCUGUAGGAAG-5′ [21] were purchased
from GenTerra (Moscow, Russia). The primers used for the target mRNA: VEGF forward primer
(5′-CCCTGATGAGATCGAGTACATCTT-3′), VEGF reverse primer (5′-ACCGCCTCGGCTTGTCAC-3′),
GAPDH forward primer (5′-GTCTCCTCTGACTTCAACAGCG-3′), and GAPDH reverse primer
(5′-ACCACCCTGTTGCTGTAGCCAA-3′) were purchased from GenTerra (Moscow, Russia).

Primary NHKs were from therapeutically indicated circumcisions (ethical approval EA1/081/13)
after parents had signed the written informed consent. Primary cells were isolated according to a
standard operating procedure [22]. In brief, tissues were washed with phosphate buffered saline (PBS)
pH 7.4, cut into pieces, and incubated with dispase solution overnight at 4 ◦C. Next, epidermis was
separated from dermal pieces and collected in Trypsin–EDTA solution to isolate keratinocytes. After
stopping the enzymatic reaction, keratinocytes were grown and subcultured in cell culture flasks. Cells
in passage 3 were used for cell viability experiments.

Human retinal epithelial (ARPE-19) cells were obtained from American Type Culture Collection
(ATCC, Manassas, VA, USA).

2.2. Particle Preparation

Chitosan–heparin nanoparticles were prepared based on spontaneous polyelectrolyte
complexation in mild conditions [15]. Polyelectrolyte complex formation between polycationic chitosan
and polyanionic heparin results in partial charge neutralization. Before complexation heparin was
dissolved in deionized water to give solution with concentration 1 mg/mL, while chitosan was dissolved
in 0.01% acetic acid solution to obtain 10 mg/mL solution and further diluted with PBS pH 8.0–8.5 or
0.1M NaOH to obtain the final concentration 0.1 mg/mL. The pH of the chitosan solutions was fixed at
6.0, except in the studies on the effects of pH on size/zeta-potential and encapsulation efficiency of
oligonucleotide. Before the complexation, chitosan solution was sonicated for 60–90 s using 10% power
of ultrasonic homogenizer (Bandelin Sonopuls HD 2070, Berlin, Germany). After that, chitosan–heparin
nanoparticles were obtained by dropwise addition of heparin solution to chitosan solution under
stirring (Vortex, Thermo Fischer Scientific, Vantaa, Finland) at room temperature. To encapsulate
oligo- and polynucleotides inside chitosan–heparin nanoparticles, the anionic oligonucleotide was
added to chitosan solution immediately after sonication under stirring, thereafter heparin was added
to these complexes.

2.3. Particle Structure

Hydrodynamic diameter, polydispersity index (PDI) and zeta potential were determined by
dynamic light scattering (DLS) using a Zetasizer Nano ZS with He-Ne laser (λ = 633 nm; Malvern
Instruments, Worcester, UK) at 25 ◦C. Moreover, particle morphology and size were measured with
scanning-transmission electron microscopy (STEM; SU8010, Hitachi, Japan) and nanoparticle tracking
analysis (NTA; Nanosight NS300, Malvern Panalytical, Worcester, UK).

The concentration of particles which were used for DLS, zeta-potential, and STEM experiments
was 10% from the stock particle suspension. DLS experiments were performed in PBS, pH 7.4, whereas
the zeta-potentials were determined in deionized water (except the studies of pH effects).

2.4. Oligonucleotide Loading Efficiency

Oligonucleotide-loaded nanoparticles were obtained by adding 1 µg of duplex
oligo-thymidine-adenine (dT-dA) or Cy3-oligo-thymidine-adenine (Cy3-dT-dA) to chitosan solution
before complexation with heparin. To determine the loading efficiency of Cy3-dT-dA into
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chitosan–heparin nanoparticles, free oligonucleotide was separated from the loaded nanoparticles
using centrifugation of 10,000× g at 4 ◦C for 20 min in filter tubes (30,000 NWML, Amicon Ultra 0.5 mL,
Merck, Darmstadt, Germany). The filtrate with free Cy3-dT-dA was collected and analyzed using
multimode microplate reader (Thermo Scientific Varioscan lux, Vantaa, Finland) at excitation and
emission wavelengths of 550 and 570 nm, respectively. The amount of loaded oligonucleotide was
calculated using a linear calibration curve. The loading efficiency was expressed as encapsulated/total
ratio of oligonucleotide.

2.5. Oligonucleotide Release

In vitro release of Cy3-dT-dA from chitosan–heparin and chitosan complexes was measured for
4 h using 100 µL of test formulation diluted with 300 µL of the release media. The release media were
buffer solutions with different pH: late endosome (2-(N-morpholino)ethanesulfonic acid buffer solution
(MES) pH 6.3), lysosome (MES pH 4.5), cytosol (PBS pH 7.4) media, in Eppendorf tubes with filter
(30,000 NWML, Amicon Ultra 0.5 mL, Merck, Darmstadt Germany) and shaken at 37 ◦C and 1000 rpm.
At predetermined times, the tubes were centrifuged at 10,000× g for 15 min. The filtrates were collected
for fluorescent measurements to estimate the amount of released oligonucleotide (λex = 550 nm,
λem = 570 nm). The release was calculated as slope × fluorescence × volume of sample.

2.6. Particle Cytotoxicity

The cytotoxicity of nanoparticles was studied using MTT (3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide) reduction assay. NHK were seeded into 96-well plates at density
of 104 cells per well (TPP, Trasadingen, Switzerland). Keratinocyte growth medium (KGM) was
prepared by mixing of keratinocyte basal medium (KBM, Lonza, Visp, Switzerland) with a KGM
supplement pack, which contained 2.0 mL of BPE, 0.5 mL human epidermal growth factor protein
(hEGFP), 0.5 mL of insulin, 0.5 mL of hydrocortisone, 0.5 mL of transferrin, 0.5 mL of epinephrine, and
0.5 mL of GA-1000. After 24 h the nanoparticles without any cargo and reagents for particle preparation
(concentrations of 0.05% and 0.005% mass referred to chitosan amount in KGM) were added for a 24-h
period. Then, 100 µL MTT solution (5 mg/mL in PBS) was added after the incubation period for 4 h.
The supernatant was carefully removed, and cells were lysed in 50 µL dimethyl sulfoxide for 5 min
to dissolve the formazan salt crystals. The absorbance was measured at 540 nm using a Micro Plate
Reader (FLUOstar Optima, BMG Labtech, Ortenberg, Germany). For toxicity assessment, KGM was
used as a reference for untreated cells (negative control), 0.005% mass. Sodium dodecyl sulfate (SDS,
Sigma-Aldrich, München, Germany) in KGM was used as positive control, and 10% of distilled water
in KGM was the solvent control. The mean value of solvent control (corrected for blank value) was set
to 100%. As reported in the previous studies, we considered cell viability below 75% as an indicator of
cytotoxicity [23].

In addition to the testing of NAD(P)H-dependent oxidoreductase activity using MTT assay, the
Trypan Blue dye exclusion test was used to determine the number of viable cells present in a cell
suspension. Following the same conditions, the cells were incubated with nanoparticles for a 24 h at
37 ◦C and 5% CO2. Then, an equal quantity of 0.4% Trypan Blue dye was added to the cell suspension.
The mixture was incubated for less than three minutes at room temperature. All cells (blue and clear)
were counted on hemocytometer using a light microscope. The results were expressed as a percentage
of blue non-viable cells in relation to the total number of cells.

2.7. Cellular Uptake and Transfection

Cell uptake of chitosan–heparin and chitosan nanoparticles into ARPE-19 cell line was assessed using
Cy5 labeled double stranded VEGF siRNA complexed by the polymers. The transfection of ARPE-19 was
performed using chitosan and chitosan–heparin nanoparticles with encapsulated pEGFP-C2.

Firstly the cells were seeded on 96-well optical-bottom plate with Coverglass base (Thermo
ScientificTM NuncTM MicroWellTM) with a density of 5 × 104 cells/well in Dulbecco’s Modified Eagle
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Medium (DMEM-F12) (Biolot, Saint Petersburg, Russia)/10% fetal bovine serum (FBS) (Biowest, South
America)/50 IU/mL penicillin/50 µg/mL streptomycin (Biolot, Saint Petersburg, Russia). After 8 h, the
medium was removed and 90 µL serum-free DMEM-F12 medium was added to each well. In the
cell transfection study, 10 µL of 0.02 mg/mL (200 ng) chitosan or chitosan–heparin nanoparticles with
different concentrations of heparin (1:1; 1:2; 1:3 chitosan:heparin mass ratios) and 100 ng of pEGFP-C2
were added to each well (mass ratio chitosan:pDNA = 2:1; N/P = 4.6). To investigate cell uptake,
0.1 nmol of Cy5-siRNA complexed by chitosan or chitosan–heparin at different heparin levels (4:1; 2:1;
1:1 chitosan:heparin mass ratios; mass ratio of chitosan:siRNA was 2:1 equivalent to N/P = 4.6) was
added to the wells. The cells were incubated with nanoparticles in serum-free medium for 4 h, then
the medium was removed and cells were washed with 1 M NaCl in order to wash out not penetrated
particles. After that, 100 µL DMEM-F12 containing 2× FBS and 2× penicillin–streptomycin was added
for another 20 h of incubation. Cell uptake and transfection levels obtained with blank Cy5-siRNA and
pEGFP-C2 were used as controls.

After 24 h the cells were fixed using exposure of 200 µL 3.7% of formaldehyde–methanol per well
for 15 min at 37 ◦C. Thereafter, the cells were washed three times with PBS. Cell membranes were
permeabilized with Permeabilization Buffer (0.2% Triton X-100 in PBS) for 15 min. Staining of the
cell nuclei was performed using incubation with Hoechst 33,258 (1 µg/mL) for 30 min according to
an established protocol [18]. Then, the cells were washed with PBS for three times, 5 min each time.
In order to remove the salts, the cells were washed three times, 2 min each time, with distilled water.
Then, the cell membranes were stained by 1× CellMask Green Plasma Membrane Stain (λex = 522 nm,
λem = 535 nm; Thermo Fischer Scientific, Paisley, UK), according to the manufacturer’s protocol.

The cell uptake efficiency was determined by analyzing the fluorescence intensity of Cy5-siRNA
(λex = 650 nm, λem = 670 nm) using CELENA S Digital Imaging System (Logos Biosystems, GE
Healthcare, South Korea) and Cytell Cell Imaging instrument (GE Healthcare, Washington, Issaquah,
USA). Transfection efficiency was determined by analyzing the fluorescence intensity of GFP using a
microplate reader (λex = 488 nm, λem = 509 nm; (Thermo Scientific Varioskan lux, Vantaa, Finland).
Transfection efficiency were calculated as a percentage of GFP fluorescent signal in relation to the
average fluorescence of the cells treated with pEGFP-C2 alone.

2.8. Gene Silencing of VEGF

The RNA interference potency of 27 bp ds siRNA complexed with chitosan–heparin and directed
against VEGF was evaluated in ARPE-19 cells.

ARPE-19 cells were seeded on 24-well plate (Costar TC-treated Multiple Well Plates, Corning,
USA) at a density of 2× 105 cells/well in DMEM-F12 (Biolot, Saint Petersburg, Russia)/10% FBS (Biowest,
Nuaille, France)/50 IU/mL penicillin/50 µg/mL streptomycin (Biolot, Saint Petersburg, Russia) overnight
prior to siRNA delivery. After that, the medium was removed and 500 µL serum-free DMEM-F12
medium was added to each well. Then, 1 nmol of the siRNA complexed with chitosan–heparin (4:1; 2:1;
1:1 chitosan:heparin mass ratios) was added to each well (mass ratio chitosan:siRNA was 2:1; N/P = 4).
To investigate RNA interference in the absence of ds VEGF siRNA, chitosan–heparin complexes with
scrambled siControl were added using similar conditions. After 4 h of incubation, the medium was
replaced with fresh medium, and the cells were further cultured for 48 h.

The RNA interference against VEGF was evaluated by analyzing the levels of VEGF mRNA with
reverse transcription polymerase chain reaction (RT-PCR). Glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) mRNA was used as control. The extraction of total RNA was performed using RNA extraction
kit from Biosilica according to the manufacturer’s protocol (Biosilica, Novosibirsk, Russia) and the
concentration of RNA was determined based on the absorbance at 260 nm. Then, 60 ng of cDNA
was synthesized using the MMLV RT kit (Evrogen, Moscow, Russia). Further RT-PCR analysis was
conducted using 12 ng of cDNA and the relevant VEGF forward, VEGF reverse, GADPH forward,
and GADPH reverse primers. The analyses were carried out using a qPCRmix-HS SYBR (Evrogen,
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Moscow, Russia) according to the manufacturer’s protocol. The PCR consisted of 45 amplification
cycles of 95 ◦C for 30 s, 55 ◦C for 30 s, and 72 ◦C for 45 s.

2.9. Statistics

The data were expressed as mean (±SD). Statistical significance of differences (at least
3 measurements for each probe) was determined by one-way analysis of variance (ANOVA) with post
hoc test (Bonferroni). Statistical analysis and plotting were performed using PRISM software (GraphPad
Prism 5.0, La Jolla, CA, USA). p ≤ 0.05 was considered to indicate a statistically significant difference.

3. Results and Discussion

3.1. Nanoparticle Size, Shape, and Surface Charge

Heparin should be suitable polymeric component in nanomedicines, because it has relatively
low molecular weight (12–14 kDa) and it is biodegradable, biocompatible, and non-gelling. However,
heparin has been rarely been used for the delivery of gene medicines. To the best of our knowledge, we
are the first ones who developed self-assembling chitosan–heparin nanoparticles for cutaneous gene
delivery. The ionic crosslinking of the natural polymers is an alternative to covalently cross-linked
hydrogels. The electrostatic adhesion between cationic amino groups of chitosan and anionic carboxyl
groups of heparin provide a strong interaction in this polyelectrolyte system [15,16,23,24].

Since natural polysaccharides usually have a broad molecular mass distribution and, in some
cases, irregular composition, it was important to study the effect of various parameters on particles
structure and their stability. Moreover, the size, shape and surface chemistry of nanoparticles can
greatly impact cellular uptake and their delivery efficiency in vivo [25]. For determination of particle
size, morphology and surface charge various methods were used in this study.

Dynamic light scattering showed that chitosan–heparin nanoparticles with mass ratios of 2:1 and
3:1 yielded the smallest particles with mean diameters of 176 nm and 192 nm, respectively (Figure 1A).
The agglomeration takes place at isoelectric point (appr. mass ratio of 0.5:1). While an increased
amount of chitosan decreases the particle size up to the chitosan/heparin ratio of 3:1, further addition
of chitosan increases the particle size (mean size of 1088 nm at 15:1 ratio). The most compact particles
with minimum size distribution were obtained at 2:1 chitosan–heparin ratio that can be related to the
strongest complexation of two counterparts. The differences in mass ratio represent the relation of
polymer weights. The particles formed a stable colloidal solution for at least 72 h.
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Figure 1. Size (A) and charge (zeta-potential) (B) of chitosan–heparin nanoparticles prepared with
various mass ratios. The smallest sizes are shown with red rectangle. Measurements were performed
in 0.01 M PBS, pH 7.4. Mean (±SD), n = 3.
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Higher proportions of chitosan in the particles resulted in higher positive zeta-potentials (Figure 1B).
Nevertheless, the surface charge of the nanoparticles increases only slightly at mass ratios from 2:1
to 5:1 and chitosan forms nanoparticles with nearly constant hydrodynamic sizes (Figure 1A) and
zeta-potentials (Figure 1B) at these mass ratios. The similar effects have been shown also in hyaluronic
acid/chitosan polyelectrolyte complexes [26]. Further increases to chitosan–heparin ratios of 10:1–15:1
forced the nanoparticles to form large aggregates.

We selected chitosan–heparin nanoparticles with a mass ratio of 2:1 for further experiments. These
nanoparticles are expected to be colloidally stable, since they minimal size, narrow size distribution and
high surface charge. The particles were loaded with negatively charged oligonucleotide dT-dA that
resulted in polyplex formation (mass ratio chitosan:oligonucleotide 2:1, N/P = 4.6) between chitosan,
heparin and oligonucleotide. The size of the polyplexes was 145 ± 27 nm and mean PDI was 0.21.
This PDI demonstrates a narrow size distribution compared to many other nanoparticles [25]. The zeta
potential decreased to 24.9 ± 0.6 mV after complexation with the oligonucleotide.

The various chitosan–heparin nanoparticles were studied with scanning-transmission electron
microscopy and nanoparticle tracking analysis to get further information about their size and particle
structure. Chitosan–heparin nanoparticles were uniformly spherical at both pH 6.0 (Figure 2A) and pH 8.0
(Figure 2B). The particles had a mean diameter of about 50 nm at pH 6.0 and slightly acidic environment
caused swelling of individual particles (Figure 2A). In contrast, at pH 8.0 the nanoparticles collapsed and
aggregated (Figure 2B), indicating pH-sensitive properties of chitosan–heparin nanoparticles. The different
sizes obtained by DLS and STEM are due to the technical differences of both methods and this has been
reported earlier [27].
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NTA is a method for the determination of a hydrodynamic diameter and size distribution profile
of small particles in liquid suspension. NTA tracks the Brownian motion of individual particles or
their aggregates at size range of 10–1000 nm and calculates their size taking into account the medium
viscosity and particle shape [28].

NTA determination resulted in mean particle size of about 98 nm, smaller diameter than the one
obtained with DLS (Figures 1A and 3A). Moreover, small nanoparticles (about 20–30 nm) were clearly
visible with the Nanosight system, but harder to capture due to the presence of larger particles that may
lead to overexposure when increasing the focus. With increased amounts of chitosan (mass ratio 5:1)
(Figure 3B), large conglomerates consisting of small nanoparticles were regularly seen. At increasing
chitosan concentration, the nanoparticles formed an ionic network structure in a liquid suspension
resulting in size of approximately 1000 nm. These conglomerates are hardly capable of penetrating
into the cells or mediating transgene transfection.
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Figure 3. Nanoparticle tracking analysis images of chitosan–heparin nanoparticles with mass ratios of
2:1 (A) and 5:1 (B) diluted in 0.01 M PBS 7.4.

3.2. Oligonucleotide Entrapment Efficiency

In order to deliver genetic materials into the target cells, DNA or siRNA can be bound to
polyelectrolyte chitosan–heparin nanoparticles by ionic forces. We used a fluorescently labeled
oligonucleotide as an siRNA model. Due to the pH-sensitive nature of chitosan, defined by its pKa

6.0, we examined the impact of the pH value on the entrapment efficiency of oligonucleotide into
chitosan–heparin nanoparticles (Figure 4A), as well as their size and zeta-potential (Figure 4B).
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Figure 4. Effect of pH of the medium on entrapment efficiency (A), hydrodynamic diameter and
zeta-potential (the value above the column) (B). Particles with smallest hydrodynamic diameter
incubated under pH 6.0 are enclosed in red rectangle. Measurements were performed in various buffer
solutions (MES 5.0; MES 6.0; PBS 7.0; PBS 8.0). Mean (±SD), n = 3.

Chitosan–heparin complexes encapsulate the oligonucleotide at various degrees, depending
on pH of the medium. Almost 100% of labeled oligonucleotide was entrapped at acidic conditions
(Figure 4A). The amino groups of chitosan were protonated to the greatest extent in the acidic media
resulting in maximal binding efficiency. Thus, the optimal pH for oligonucleotide entrapment has to
be around pH 6.0 or below.

The investigations of particle size and zeta-potential at different pH values showed increasing
particle size at weakly alkaline conditions due to the deprotonation of amino groups of chitosan that
resulted in the aggregation of nanoparticles (Figure 4B). At acidic media with (pH = 5.0) the particle
size also increased due to the protonation of amino groups of chitosan followed by the swelling
of chitosan–heparin nanoparticles. We assume that protonation/deprotonation processes cause the



Pharmaceutics 2019, 11, 317 9 of 16

decreased zeta-potential when pH is shifting from slightly acidic to weakly alkaline media (Figure 4B).
Compact and stable nanoparticle complexes were observed at pH 6.0 and below.

Consequently, chitosan–heparin nanoparticles must be prepared at controlled pH conditions to
obtain their minimal size.

3.3. Oligonucleotide Release

The impact of added heparin on oligonucleotide release was investigated in media with different
pH values, mimicking cytosol and bloodstream (pH 7.5), early endosomes (pH 6.3), or lysosomes
(pH 4.5) (Figure 5). Major part of oligonucleotide was released from chitosan and chitosan–heparin
nanoparticles in 4 h. The release rate increased especially at pH 4.5, and heparin accelerated
oligonucleotide release from the polyplexes at this pH (Figure 5). This might be related to the altered
swelling properties of chitosan–heparin nanoparticles. Since heparin is stronger polyanion than
oligonucleotide, the displacement of cargo can accelerate release rate. Another reason may be related
to breaking of chitosan–heparin nanoparticles into smaller pieces at pH 4.5, which would speed up
the release after 2 h of incubation. At endosomal and cytosolic pH, the release was slower in both
systems and the curves had similar slopes. At pH 6.3 the release kinetics of both systems were similar
(Figure 5). It might be explained by stability factors of nanoparticle colloidal solutions. The increase of
pH to 7.4 did not result in a major difference in oligonucleotide release as compared to pH 6.3. Overall
chitosan–heparin systems protect the oligonucleotide cargo from degradation and presents relatively
fast and complete release at slightly acidic medium, an important factor in facilitation of transfection.
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polyplexes with encapsulated Cy3-dT-dA were incubated at pH 4.5 (MES), pH 6.3 (MES), pH 7.4 (PBS)
for 240 min.

The kinetic patterns were approximated to elucidate the release mechanism [29] (Table 1).
The oligonucleotide release from chitosan and chitosan–heparin nanoparticles was best correlated to
the Higuchi model (correlation coefficients >0.95). Thus, we assumed that diffusion is an important
release mechanism, based on further confirmation by a good correlation with the Baker–Lonsdale
model. The release exponent n = 1.0–1.2, obtained from a Korsmeyer–Peppas model for chitosan
nanoparticles, proved erosion of the chitosan chain to define the cargo release. In contrast, the release
exponent n = 0.5–0.86 for chitosan–heparin nanoparticles corresponded to non-Fickian diffusion, and,
thus proved a combination of both diffusion and erosion to control release rates. The correlation
coefficient value r was around 0.95 for both release from chitosan and chitosan–heparin, best correlated
with zero-order model, i.e., drug release at constant rate. The comparison of correlation coefficient
values for zero-order (r ≈ 0.95) and first-order (r ≈ 0.8) models led us to consider that the release is best
correlated with zero-order kinetics. The release coefficients (k) obtained by Hixson-Crowell model
confirms the process defined by diffusion rather than dissolution of the carrier.
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Table 1. Release kinetics of oligonucleotides from chitosan or chitosan–heparin nanoparticles, with r as
correlation coefficient value, k as the release constant, and n as the diffusion or release exponent.

Nanoparticle pH Model

Zero Order First Order Higuchi Hixson-
Crowell

Korsmeyer–
Peppas

Baker–
Lonsdale

Chitosan

4.5
r = 0.9498 r = 0.8150 r = 0.9445 r = 0.8741 r = 0.9394 r = 0.9430
k = 13.48 k = −0.51 k = 28.52 k = −0.84 n = 1.26 k = 8.41

6.3
r = 0.9537 r = 0.7897 r = 0.9704 r = 0.8662 r = 0.9688 r = 0.9583
k = 16.13 k = −0.41 k = 34.47 k = −0.78 n = 1.04 k = 14.61

7.4
r = 0.9811 r = 0.9037 r = 0.9400 r = 0.9478 r = 0.9489 r = 0.8687
k = 33.80 k = −0.47 k = 70.43 k = −1.09 n = 1.12 k = 78.14

Chitosan–heparin

4.5
r = 0.9644 r = 0.7834 r = 0.9943 r = 0.8651 r = 0.9795 r = 0.9841
k = 6.52 k = −0.33 k = 14.01 k = −0.57 n = 0.86 k = 2.42

6.3
r = 0.9666 r = 0.8193 r = 0.9535 r = 0.8517 r = 0.9506 r = 0.9639
k = 6.80 k = −0.24 k = 19.06 k = −0.45 n = 0.59 k = 5.91

7.4
r = 0.9377 r = 0.7855 r = 0.9839 r = 0.8483 r = 0.9768 r = 0.9836
k = 14.40 k = −0.26 k = 31.32 k = −0.56 n = 0.66 k = 16.87

3.4. Biocompatibility

After showing the stability of nanoparticles for 48 h in the test medium by DLS, we assessed their
cytotoxicity in cultured cells. The hydrodynamic sizes of chitosan and chitosan–heparin nanoparticles
(mass ratio 1:1 and 2:1) without cargo after incubation in DMEM during 48 h were not higher than
240 nm, suggesting colloidal stability in the medium. Therefore, we investigated cellular viability
with MTT and Trypan Blue assays and primary human keratinocytes. The cells were exposed to
chitosan or chitosan–heparin nanoparticles for 24 h and chitosan and heparin bulk materials were used
as references.

In general, chitosan–heparin nanoparticles induce minor cytotoxicity in human keratinocytes, as
the viability declined to 74% in the worst case (Figure 6A). About 18% of cells lost membrane integrity
(Figure 6B) for chitosan–heparin nanoparticles at concentration of 0.005%. Nevertheless, higher
nanoparticle concentrations only slightly increased the cytotoxicity. This effect remained marginal
with minimal viability of 75% and maximum 22% average dead cells. Different chitosan–heparin ratios
did not affect cellular toxicity, but the combination of heparin and chitosan improved the safety of the
nanoparticles as compared to chitosan alone.
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3.5. Transfection Efficiency

Cellular DNA-transfection with chitosan based polyplexes has been described previously, and
some factors affecting the efficiency (e.g., molecular weight of chitosan, chitosan/DNA ratio, particle
size, zeta-potential) have been investigated [7,8,18]. Following endocytic cellular uptake, release of
DNA from endo-lysosomal compartment to the cytosol and nucleus was described. It was based on
protonation of amino groups in chitosan, consequent particle swelling, and bursting of endosomal
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membrane [7]. There are a few reports about inclusion of polyanions into chitosan-based polyplexes,
namely hyaluronic acid [26] or sodium alginate [30]. The transfection of epithelial cells with those
polyplexes with pDNA or siRNA resulted in better cell penetration and release of the cargo as compared
to chitosan alone [26]. However, the effects of heparin in the chitosan-based polyplexes have not been
studied earlier.

Human retinal epithelial cell line was transfected with the reporter gene that encodes green
fluorescence protein using chitosan and chitosan–heparin nanoparticles. The fluorescence signal was
used as an indicator of transfection efficiency (Figure 7).
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Figure 7. Transfection of ARPE-19 cells by chitosan–heparin-pEGFP polyplexes at mass ratio 1:1:0.5 (A)
and 1:3:0.5 (B). Normalized fluorescence of ARPE-19 cells after transfection with pEGFP chitosan–heparin
polyplexes (C). Transfected cells using pEGFP alone were used as negative control and the transfection
data were normalized to this negative control. Hydrodynamic diameter (DLS) and surface zeta-potential of
polyplexes (D). The particle size (black bars) and zeta potential (grey bars) of the polyplexes. The formulation
with the best transfection efficiency is marked with red rectangles. Mean (±SD), n = 3.

The data demonstrates that the cells were transfected at much higher efficiency with
chitosan–heparin–pEGFP polyplexes as compared to the control transfection with pEGFP-C2 alone.
Furthermore, chitosan–heparin-based polyplexes exhibited higher transfection efficiency than chitosan
nanoparticles with pEGFP.

Transfection with chitosan and chitosan–heparin based nanoparticles depends on the cellular
endocytosis of polyplexes. DNA release from the polyplexes is believed to proceed through proton
sponge effect due to the swelling of chitosan–heparin complexes in the endo-lysosomes [31]. Chitosan is
known to be a strong polycation with high charge density. Thus, the inclusion of heparin, (polyanionic
glycosaminoglycan) on the nanoparticles was proposed to enhance DNA release and transfection of
cells due to interactions between heparin and chitosan, which may lead to DNA displacement and its
release to the cytoplasm.
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Polyplexes were also characterized in terms of particle size, polydispersity index and zeta-potential.
Excess of heparin on the nanoparticle surface at a chitosan:heparin mass ratio of 1:3 resulted in negative
surface charge (zeta-potential −22 ± 4 mV). However, there were no significant size differences among
polyplexes at different chitosan:heparin mass ratios (Figure 7D). Hence, the polyplexes with negative
zeta potentials were capable to bind DNA and transfer it into the cells.

The lowest rate of transfection was obtained with pEGFP-C2 alone. Chitosan–pEGFP formulation
increased the tranfection levels only by 17% (Figure 7C). In contrast, GFP expression after chitosan/heparin
polyplex transfection was almost two times higher than that of chitosan polyplexes (Figure 7C). In addition,
significant differences were found among polyplexes with different chitosan/heparin mass ratios, with
chitosan/heparin polyplexes at a mass ratio 1:3 showing the highest transfection levels (Figure 7C).

3.6. Gene Silencing of VEGF

Vascular endothelial growth factor is an endothelial cell-specific mitogen and an angiogenesis
inducer in vivo. Its activity has been linked to tumor growth and formation of metastases [32]. VEGF
has been implicated in the disruption of retinal pigment epithelium barrier function and accumulation
of subretinal fluid from the leaky neo-vessels. Therefore, it is important to find a powerful technologies
for VEGF inhibition [33].

RNA interference technologies are currently widely used in functional genomic studies [34–36].
Also, small interfering RNA is being developed as therapeutics against cancers and other indications [37].
However, the drug delivery systems for siRNA have not been fully developed for in vivo use. We
studied the use of chitosan–heparin nanoparticles and the role of heparin amount in these polyplexes
for the delivery of anti-VEGF siRNA into ARPE-19 cells.

We investigated the RNA interference efficiency of anti-VEGF siRNA [21] in ARPE-19 cells that
express VEGF constitutively. The VEGF mRNA expression in the cells was analyzed by RT-PCR.
Chitosan–heparin polyplexes at mass ratios 1:1 and 2:1 demonstrated two times stronger inhibitory
effects than chitosan–heparin polyplexes at a 4:1 mass ratio (Figure 8).

Fluorescence microscopy images of ARPE-19 cells treated with Cy5-dsRNA–chitosan–heparin
polyplexes showed effective cell penetration of Cy5-labeled dsRNA. In the case of 1:1 and 2:1
chitosan–heparin mass ratios, most siRNAs were located in the cytoplasm (Figure 8). At a 4:1 mass
ratio, chitosan–heparin particles have larger particle size due to the aggregate formation. Hence, the
particle penetration into the cells was partially limited (Figure 8).

Overall, addition of heparin to chitosan-based polyplexes enhanced siRNA and DNA release and
cytosolic delivery, thereby improving gene silencing and transgene expression in the cells.
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Figure 8. RNA interference by anti-VEGF small interfering RNA that was delivered in chitosan–heparin
nanoparticles at different mass ratios (1:1; 2:1; 4:1) in the ARPE-19 cell line. LEFT. Relative VEGF mRNA
expression data from RT-PCR assays are shown (left panel). GADPH mRNA was measured as an
intrinsic control. Mean (±SD), n = 3. RIGHT. Fluorescence microscopy images of ARPE-19 cells that
were transfected with Cy5-dsRNA (red color) complexed by chitosan–heparin at different mass ratios
(1:1; 2:1; 4:1). The cell nuclei were stained by Hoechst 33,258 (blue color) and the plasma membranes
were stained using CellMask Green Plasma Membrane Stain (yellow and green color).

4. Conclusions

In present work, biocompatible nanoparticles based on chitosan–heparin complexes were
developed. The particles were prepared in mild conditions using a drop-wise addition method.
The model oligonucleotide was associated with cationic chitosan–heparin complexes via ionic
interactions that led to the formation of chitosan–heparin-oligonucleotide polyplexes. The pH-sensitive
behavior of nanoparticles was demonstrated. DLS, NTA, and STEM methods informed that the mean
particle sizes of the particles were 100–200 nm depending on the heparin amount. The increasing chitosan
concentrations in the polyplexes led to the particle aggregation and increased particle size (400–1000 nm).
The in vitro release studies and mathematical modelling of the release kinetics demonstrated increased
release rate of oligonucleotide at slightly acidic conditions (pH 4.5) due to swelling and diffusion of
cargo. In vitro release from chitosan–heparin polyplexes was faster than from chitosan polyplexes,
possibly due to the effect of heparin as competitive polyanion.

The cell viability tests demonstrated lack of cytotoxicity for chitosan–heparin. Addition of heparin
to the polyplexes did not affect cellular uptake, but increased the DNA-transfection efficiency in the
ARPE cells. Likewise, VEGF silencing in the ARPE-19 cells was enhanced when heparin was used in
the chitosan polyplexes. These improved effects were facilitated by the enhanced release of siRNA in
the cells. This approach could be used to increase the rate of cargo release from other nanocarriers.
The chitosan–heparin nanocarriers also have potential for the delivery of genetic drugs into epithelial
tissues because they may open the epithelial tight junctions and they have mucoadhesive properties.
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