6 research outputs found

    Coding rate and duration of vocalizations of the frog , Xenopus laevis

    Get PDF
    Journal ArticleVocalizations involve complex rhythmic motor patterns, but the underlying temporal coding mechanisms in the nervous system are poorly understood. Using a recently developed whole-brain preparation from which "fictive" vocalizations are readily elicited in vitro, we investigated the cellular basis of temporal complexity of African clawed frogs (Xenopus laevis). Male advertisement calls contain two alternating components- fast trills (~300 ms) and slow trills (~700 ms) that contain clicks repeated at~60 and~30 Hz, respectively.We found that males can alter the duration of fast trills without changing click rates. This finding led us to hypothesize that call rate and duration are regulated by independent mechanisms.We tested this by obtaining whole-cell patch-clamp recordings in the "fictively" calling isolated brain.We discovered a single type of premotor neuron with activity patterns correlated with both the rate and duration of fast trills. These "fast-trill neurons" (FTNs) exhibited long-lasting depolarizations (LLDs) correlated with each fast trill and action potentials that were phase-locked with motor output-neural correlates of call duration and rate, respectively. When depolarized without central pattern generator activation, FTNs produced sub-threshold oscillations and action potentials at fast-trill rates, indicating FTN resonance properties are tuned to, and may dictate, the fast-trill rhythm. NMDAreceptor(NMDAR)blockade eliminated LLDs in FTNs, and NMDAR activation in synaptically isolated FTNs induced repetitive LLDs. These results suggest FTNs contain an NMDAR-dependent mechanism that may regulate fast-trill duration. We conclude that a single premotor neuron population employs distinct mechanisms to regulate call rate and duration

    Vocal Pathway Degradation in Gonadectomized Xenopus laevis Adults

    No full text
    Reproductive behaviors of many vertebrate species are activated in adult males by elevated androgen levels and abolished by castration. Neural and muscular components controlling these behaviors contain numerous hormone-sensitive sites including motor initiation centers (such as the basal ganglia), central pattern generators (CPGs), and muscles; therefore it is difficult to confirm the role of each hormone-activated target using behavioral assays alone. Our goal was to address this issue by determining the site of androgen-induced vocal activation using male Xenopus laevis, a species in which androgen dependence of vocal activation has been previously determined. We compared in vivo calling patterns and functionality of two in vitro preparations—the isolated larynx and an isolated brain from which fictive courtship vocalizations can be evoked—in castrated and control males. The isolated larynx allowed us to test whether castrated males were capable of transducing male-typical nerve signals into vocalizations and the fictively vocalizing brain preparation allowed us to directly examine vocal CPG function separate from the issue of vocal initiation. The results indicate that all three components—vocal initiation, CPG, and larynx—require intact gonads. Vocal production decreased dramatically in castrates and laryngeal contractile properties of castrated males were demasculinized, whereas no changes were observed in control animals. In addition, fictive calls of castrates were degraded compared with those of controls. To our knowledge, this finding represents the first demonstration of gonad-dependent maintenance of a CPG for courtship behavior in adulthood. Because previous studies showed that androgen-replacement can prevent castration-induced vocal impairments, we conclude that degradation of vocal initiation centers, larynx, and CPG function are most likely due to steroid hormone deprivation

    NMDAR-Dependent Control of Call Duration in Xenopus laevis

    No full text
    Many rhythmic behaviors, such as locomotion and vocalization, involve temporally dynamic patterns. How does the brain generate temporal complexity? Here, we use the vocal central pattern generator (CPG) of Xenopus laevis to address this question. Isolated brains can elicit fictive vocalizations, allowing us to study the CPG in vitro. The X. laevis advertisement call is temporally modulated; calls consist of rhythmic click trills that alternate between fast (∼60 Hz) and slow (∼30 Hz) rates. We investigated the role of two CPG nuclei—the laryngeal motor nucleus (n.IX–X) and the dorsal tegmental area of the medulla (DTAM)—in setting rhythm frequency and call durations. We discovered a local field potential wave in DTAM that coincides with fictive fast trills and phasic activity that coincides with fictive clicks. After disrupting n.IX–X connections, the wave persists, whereas phasic activity disappears. Wave duration was temperature dependent and correlated with fictive fast trills. This correlation persisted when wave duration was modified by temperature manipulations. Selectively cooling DTAM, but not n.IX–X, lengthened fictive call and fast trill durations, whereas cooling either nucleus decelerated the fictive click rate. The N-methyl-d-aspartate receptor (NMDAR) antagonist dAPV blocked waves and fictive fast trills, suggesting that the wave controls fast trill activation and, consequently, call duration. We conclude that two functionally distinct CPG circuits exist: 1) a pattern generator in DTAM that determines call duration and 2) a rhythm generator (spanning DTAM and n.IX–X) that determines click rates. The newly identified DTAM pattern generator provides an excellent model for understanding NDMAR-dependent rhythmic circuits

    Probing forebrain to hindbrain circuit functions inXenopus

    No full text
    The vertebrate hindbrain includes neural circuits that govern essential functions including breathing, blood pressure and heart rate. Hindbrain circuits also participate in generating rhythmic motor patterns for vocalization. In most tetrapods, sound production is powered by expiration and the circuitry underlying vocalization and respiration must be linked. Perception and arousal are also linked; acoustic features of social communication sounds – e.g. a baby’s cry - can drive autonomic responses. The close links between autonomic functions that are essential for life and vocal expression have been a major in vivo experimental challenge. Xenopus provides an opportunity to address this challenge using an ex vivo preparation: an isolated brain that generates vocal and breathing patterns. The isolated brain allows identification and manipulation of hindbrain vocal circuits as well as their activation by forebrain circuits that receive sensory input, initiate motor patterns and control arousal. Advances in imaging technologies, coupled to the production of Xenopus lines expressing genetically encoded calcium sensors, provide powerful tools for imaging neuronal patterns in the entire fictively behaving brain, a goal of the BRAIN Initiative. Comparisons of neural circuit activity across species with distinctive vocal patterns (comparative neuromics) can identify conserved features, and thereby reveal essential functional components
    corecore