2,545 research outputs found

    Exchange Monte Carlo Method and Application to Spin Glass Simulations

    Full text link
    We propose an efficient Monte Carlo algorithm for simulating a ``hardly-relaxing" system, in which many replicas with different temperatures are simultaneously simulated and a virtual process exchanging configurations of these replica is introduced. This exchange process is expected to let the system at low temperatures escape from a local minimum. By using this algorithm the three-dimensional ±J\pm J Ising spin glass model is studied. The ergodicity time in this method is found much smaller than that of the multi-canonical method. In particular the time correlation function almost follows an exponential decay whose relaxation time is comparable to the ergodicity time at low temperatures. It suggests that the system relaxes very rapidly through the exchange process even in the low temperature phase.Comment: 10 pages + uuencoded 5 Postscript figures, REVTe

    Testing the neutrality of matter by acoustic means in a spherical resonator

    Full text link
    New measurements to test the neutrality of matter by acoustic means are reported. The apparatus is based on a spherical capacitor filled with gaseous SF6_6 excited by an oscillating electric field. The apparatus has been calibrated measuring the electric polarizability. Assuming charge conservation in the β\beta decay of the neutron, the experiment gives a limit of ϵp-e11021\epsilon_\text{p-e}\lesssim1\cdot10^{-21} for the electron-proton charge difference, the same limit holding for the charge of the neutron. Previous measurements are critically reviewed and found incorrect: the present result is the best limit obtained with this technique

    Cooperative motion and growing length scales in supercooled confined liquids

    Full text link
    Using molecular dynamics simulations we investigate the relaxation dynamics of a supercooled liquid close to a rough as well as close to a smooth wall. For the former situation the relaxation times increase strongly with decreasing distance from the wall whereas in the second case they strongly decrease. We use this dependence to extract various dynamical length scales and show that they grow with decreasing temperature. By calculating the frequency dependent average susceptibility of such confined systems we show that the experimental interpretation of such data is very difficult.Comment: 7 pages of Latex, 3 figure

    Analysis of chromosome positions in the interphase nucleus of Chinese hamster cells by laser-UV-microirradiation experiments

    Get PDF
    Unsynchronized cells of an essentially diploid strain of female Chinese hamster cells derived from lung tissue (CHL) were laser-UV-microirradiated (=257 nm) in the nucleus either at its central part or at its periphery. After 7–9 h postincubation with 0.5 mM caffeine, chromosome preparations were made in situ. Twenty-one and 29 metaphase spreads, respectively, with partial chromosome shattering (PCS) obtained after micro-irradiation at these two nuclear sites, were Q-banded and analyzed in detail. A positive correlation was observed between the frequency of damage of chromosomes and both their DNA content and length at metaphase. No significant difference was observed between the frequencies of damage obtained for individual chromosomes at either site of microirradiation. The frequency of joint damage of homologous chromosomes was low as compared to nonhomologous ones. Considerable variation was noted in different cells in the combinations of jointly shattered chromosomes. Evidence which justifies an interpretation of these data in terms of an interphase arrangement of chromosome territories is discussed. Our data strongly argue against somatic pairing as a regular event, and suggest a considerable variability of chromosome positions in different nuclei. However, present data do not exclude the possibility of certain non-random chromosomal arrangements in CHL-nuclei. The interphase chromosome distribution revealed by these experiments is compared with centromere-centromere, centromere-center and angle analyses of metaphase spreads and the relationship between interphase and metaphase arrangements of chromosomes is discussed

    Multiple-scattering effects on incoherent neutron scattering in glasses and viscous liquids

    Full text link
    Incoherent neutron scattering experiments are simulated for simple dynamic models: a glass (with a smooth distribution of harmonic vibrations) and a viscous liquid (described by schematic mode-coupling equations). In most situations multiple scattering has little influence upon spectral distributions, but it completely distorts the wavenumber-dependent amplitudes. This explains an anomaly observed in recent experiments

    Stochastic Collapse and Decoherence of a Non-Dissipative Forced Harmonic Oscillator

    Full text link
    Careful monitoring of harmonically bound (or as a limiting case, free) masses is the basis of current and future gravitational wave detectors, and of nanomechanical devices designed to access the quantum regime. We analyze the effects of stochastic localization models for state vector reduction, and of related models for environmental decoherence, on such systems, focusing our analysis on the non-dissipative forced harmonic oscillator, and its free mass limit. We derive an explicit formula for the time evolution of the expectation of a general operator in the presence of stochastic reduction or environmentally induced decoherence, for both the non-dissipative harmonic oscillator and the free mass. In the case of the oscillator, we also give a formula for the time evolution of the matrix element of the stochastic expectation density matrix between general coherent states. We show that the stochastic expectation of the variance of a Hermitian operator in any unraveling of the stochastic process is bounded by the variance computed from the stochastic expectation of the density matrix, and we develop a formal perturbation theory for calculating expectation values of operators within any unraveling. Applying our results to current gravitational wave interferometer detectors and nanomechanical systems, we conclude that the deviations from quantum mechanics predicted by the continuous spontaneous localization (CSL) model of state vector reduction are at least five orders of magnitude below the relevant standard quantum limits for these experiments. The proposed LISA gravitational wave detector will be two orders of magnitude away from the capability of observing an effect.Comment: TeX; 34 page

    Heterogeneous Diffusion in Highly Supercooled Liquids

    Full text link
    The diffusivity of tagged particles is demonstrated to be very heterogeneous on time scales comparable to or shorter than the α\alpha relaxation time τα\tau_{\alpha} (\cong the stress relaxation time) in a highly supercooled liquid via 3D molecular dynamics simulation. The particle motions in the relatively active regions dominantly contribute to the mean square displacement, giving rise to a diffusion constant systematically larger than the Einstein-Stokes value. The van Hove self-correlation function Gs(r,t)G_s(r,t) is shown to have a long distance tail which can be scaled in terms of r/t1/2r/t^{1/2} for t \ls 3\tau_{\alpha}. Its presence indicates heterogeneous diffusion in the active regions. However, the diffusion process eventually becomes homogeneous on time scales longer than the life time of the heterogeneity structure (3τα\sim 3 \tau_{\alpha}).Comment: 4 pages, 5 figure

    The hyperon-nucleon interaction: conventional versus effective field theory approach

    Get PDF
    Hyperon-nucleon interactions are presented that are derived either in the conventional meson-exchange picture or within leading order chiral effective field theory. The chiral potential consists of one-pseudoscalar-meson exchanges and non-derivative four-baryon contact terms. With regard to meson-exchange hyperon-nucleon models we focus on the new potential of the Juelich group, whose most salient feature is that the contributions in the scalar--isoscalar (\sigma) and vector--isovector (\rho) exchange channels are constrained by a microscopic model of correlated \pi\pi and KKbar exchange.Comment: 28 pages, 8 figures, submitted to Lecture Notes in Physic

    Search for Millicharged Particles at SLAC

    Get PDF
    Particles with electric charge q < 10^(-3)e and masses in the range 1--100 MeV/c^2 are not excluded by present experiments. An experiment uniquely suited to the production and detection of such "millicharged" particles has been carried out at SLAC. This experiment is sensitive to the infrequent excitation and ionization of matter expected from the passage of such a particle. Analysis of the data rules out a region of mass and charge, establishing, for example, a 95%-confidence upper limit on electric charge of 4.1X10^(-5)e for millicharged particles of mass 1 MeV/c^2 and 5.8X10^(-4)e for mass 100 MeV/c^2.Comment: 4 pages, REVTeX, multicol, 3 figures. Minor typo corrected. Submitted to Physical Review Letter
    corecore