7 research outputs found

    Effect of brain-computer interface training based on non-invasive electroencephalography using motor imagery on functional recovery after stroke - a systematic review and meta-analysis.

    Get PDF
    Background: Training with brain-computer interface (BCI) technology in the rehabilitation of patients after a stroke is rapidly developing. Numerous RCT investigated the effects of BCI training (BCIT) on recovery of motor and brain function in patients after stroke. Methods: A systematic literature search was performed in Medline, IEEE Xplore Digital Library, Cochrane library, and Embase in July 2018 and was repeated in March 2019. RCT or controlled clinical trials that included BCIT for improving motor and brain recovery in patients after a stroke were identified. Data were meta-analysed using the random-effects model. Standardized mean difference (SMD) with 95% confidence (95%CI) and 95% prediction interval (95%PI) were calculated. A meta-regression was performed to evaluate the effects of covariates on the pooled effect-size. Results: In total, 14 studies, including 362 patients after ischemic and hemorrhagic stroke (cortical, subcortical, 121 females; mean age 53.0+/- 5.8; mean time since stroke onset 15.7+/- 18.2 months) were included. Main motor recovery outcome measure used was the Fugl-Meyer Assessment. Quantitative analysis showed that a BCI training compared to conventional therapy alone in patients after stroke was effective with an SMD of 0.39 (95%CI: 0.17 to 0.62; 95%PI of 0.13 to 0.66) for motor function recovery of the upper extremity. An SMD of 0.41 (95%CI: - 0.29 to 1.12) for motor function recovery of the lower extremity was found. BCI training enhanced brain function recovery with an SMD of 1.11 (95%CI: 0.64 to 1.59; 95%PI ranging from 0.33 to 1.89). Covariates such as training duration, impairment level of the upper extremity, and the combination of both did not show significant effects on the overall pooled estimate. Conclusion: This meta-analysis showed evidence that BCI training added to conventional therapy may enhance motor functioning of the upper extremity and brain function recovery in patients after a stroke. We recommend a standardised evaluation of motor imagery ability of included patients and the assessment of brain function recovery should consider neuropsychological aspects (attention, concentration). Further influencing factors on motor recovery due to BCI technology might consider factors such as age, lesion type and location, quality of performance of motor imagery, or neuropsychological aspects

    A different point of view: the evaluation of motor imagery perspectives in patients with sensorimotor impairments in a longitudinal study

    Get PDF
    BACKGROUND: Motor imagery (MI) has been successfully applied in neurological rehabilitation. Little is known about the spontaneous selection of the MI perspectives in patients with sensorimotor impairments. What perspective is selected: internal (first-person view), or external (third-person view)? The aim was to evaluate the MI perspective preference in patients with sensorimotor impairments. METHODS: In a longitudinal study including four measurement sessions, 55 patients (25 stroke, 25 multiple sclerosis, 5 Parkinson’s disease; 25 females; mean age 58 ± 14 years) were included. MI ability and perspective preference in both visual and kinaesthetic imagery modalities were assessed using the Kinaesthetic and Visual Imagery Questionnaire-20 (KVIQ-20), the body rotation task (BRT), and mental chronometry (MC). Additionally, patients’ activity level was assessed. Descriptive analyses were performed regarding different age- ( 64), activity levels (inactive, partially active, active), and KVIQ-20 movement classifications (axial, proximal, distal, upper and lower limb). A mixed-effects model was used to investiage the relationship between the primary outcome (MI perspective: internal, external) with the explanatory variables age, MI modality (visual, kinaesthetic), movement type (axial, proximal, distal), activity levels and the different assessments (KVIQ-20, BRT, MC). RESULTS: Imagery modality was not a significant predictor of perspective preference. Over the four measurement sessions, patients tended to become more consistent in their perspective selection, however, time point was not a significant predictor. Movement type was a significant predictor: imagination of distal vs. axial and proximal vs. axial movements were both associated with preference for external perspective. Patients with increased physical activity level tend to use internal imagery, however, this effect was borderline not statistically significant. Age was neither a significant precictor. Regarding the MI assessments, the KVIQ- 20 score was a significant predictor. The patients with higher test scores tend to use the external perspective. CONCLUSION: It is recommended to evaluate the spontaneous MI perspective selection to design patient-specific MI training interventions. Distal movements (foot, finger) may be an indicator when evaluating the consistency of the MI perspective in patients with sensorimotor impairments. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12883-021-02266-w

    Motor imagery ability assessments in four disciplines: protocol for a systematic review

    Get PDF
    Introduction: Motor imagery (MI) is a very popular and well-accepted technique in different disciplines. Originating from sport and psychology, MI is now also used in the field of medicine and education. Several studies confirmed the benefits of MI to facilitate motor learning and skill acquisition. The findings indicated that individual’s MI ability might influence the effectiveness of MI interventions. Over the last two centuries, researchers have developed several assessments to evaluate MI’s abstract construct. However, no systematic reviews (SR) exist for MI ability evaluation methods and their measurement properties. Methods and analysis: The SR will evaluate available MI ability assessments and their psychometric properties in four relevant disciplines: sports, psychology, medicine and education. This involves performing searches in SPORTDiscus, PsycINFO, Cochrane Library, Scopus, Web of Science and ERIC. Working independently, two reviewers will screen articles for selection. Then all raw information will be compiled in an overview table—including the articles’ characteristics (eg, a study’s setting or the population demographics) and the MI ability assessment (psychometric properties). To evaluate the articles’ methodological quality, we will use the COSMIN checklist. Then we will evaluate all the included assessments’ quality and perform a best-evidence synthesis. Results of this review will be reported following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Ethics and dissemination: The SR is based on published data, and ethical approval is not required. This review will provide information on assessment performance and equipment, as well as its main focus and usefulness. Furthermore, we will present the methodological quality of all the included articles and assess the included instruments’ quality. Ultimately, this will act as a valuable resource, providing an overview of MI ability assessments for individual clinical settings, treatment aims, and various populations. The SR’s final report will be published in a peer-reviewed journal and presented at relevant conferences

    Walking with a four wheeled walker (rollator) significantly reduces EMG lower-limb muscle activity in healthy subjects

    No full text
    To investigate the immediate effect of four-wheeled- walker(rollator)walking on lower-limb muscle activity and trunk-sway in healthy subjects.; In this cross-sectional design electromyographic (EMG) data was collected in six lower-limb muscle groups and trunk-sway was measured as peak-to-peak angular displacement of the centre-of-mass (level L2/3) in the sagittal and frontal-planes using the SwayStar balance system. 19 subjects walked at self-selected speed firstly without a rollator then in randomised order 1. with rollator 2. with rollator with increased weight-bearing.; Rollator-walking caused statistically significant reductions in EMG activity in lower-limb muscle groups and effect-sizes were medium to large. Increased weight-bearing increased the effect. Trunk-sway in the sagittal and frontal-planes showed no statistically significant difference between conditions.; Rollator-walking reduces lower-limb muscle activity but trunk-sway remains unchanged as stability is likely gained through forces generated by the upper-limbs. Short-term stability is gained but the long-term effect is unclear and requires investigation

    The effect of crutches, an orthosis TheraTogs, and no walking aids on the recovery of gait in a patient with delayed healing post hip fracture: A case report

    Get PDF
    Accelerated rehabilitation following hip fracture and joint replacement, including early unrestricted weight-bearing and muscle strengthening, has gained importance in hastening functional recovery and hospital discharge. The influence of walking aids on these parameters is sparsely investigated. In this case report, we document the effect of walking with crutches; an orthotic garment and strapping system, TheraTogs; and no walking aids over 3-4-week periods on walking speed, trunk sway, and muscle activity measured with electromyography (EMG). The patient was a 49-year-old female showing delayed healing following a conservatively treated avulsion fracture of the greater trochanter 12 weeks previously with a 14-year history of total hip arthroplasty. EMG analysis showed muscle activity increased with TheraTogs and decreased with crutches compared with walking with no aids. Walking speed improved at a faster rate in the TheraTogs phase than in the crutches phase and reduced in no-walking-aids phase. Mean speed (SD) for each phase was: crutches 1.11 (0.08) m/s, TheraTogs 1.35 (0.11) m/s, and no-aids 1.19 (0.14) m/s. Trunk sway increased in the crutch and no-aids phases, and became more stable in the TheraTogs phase. In this patient, function and recovery rate of all measured parameters increased more in the TheraTogs phase than the crutches or no-aids phase. This may be because muscle activity was facilitated enabling active support of recovering structures

    Effect of a four-week virtual reality-based training versus conventional therapy on upper limb motor function after stroke: A multicenter parallel group randomized trial.

    Get PDF
    BACKGROUND:Virtual reality-based training has found increasing use in neurorehabilitation to improve upper limb training and facilitate motor recovery. OBJECTIVE:The aim of this study was to directly compare virtual reality-based training with conventional therapy. METHODS:In a multi-center, parallel-group randomized controlled trial, patients at least 6 months after stroke onset were allocated either to an experimental group (virtual reality-based training) or a control group receiving conventional therapy (16x45 minutes within 4 weeks). The virtual reality-based training system replicated patients´ upper limb movements in real-time to manipulate virtual objects. Blinded assessors tested patients twice before, once during, and twice after the intervention up to 2-month follow-up for dexterity (primary outcome: Box and Block Test), bimanual upper limb function (Chedoke-McMaster Arm and Hand Activity Inventory), and subjective perceived changes (Stroke Impact Scale). RESULTS:54 eligible patients (70 screened) participated (15 females, mean age 61.3 years, range 20-81 years, time since stroke 3.0±SD 3 years). 22 patients were allocated to the experimental group and 32 to the control group (3 drop-outs). Patients in the experimental and control group improved: Box and Block Test mean 21.5±SD 16 baseline to mean 24.1±SD 17 follow-up; Chedoke-McMaster Arm and Hand Activity Inventory mean 66.0±SD 21 baseline to mean 70.2±SD 19 follow-up. An intention-to-treat analysis found no between-group differences. CONCLUSIONS:Patients in the experimental and control group showed similar effects, with most improvements occurring in the first two weeks and persisting until the end of the two-month follow-up period. The study population had moderate to severely impaired motor function at entry (Box and Block Test mean 21.5±SD 16). Patients, who were less impaired (Box and Block Test range 18 to 72) showed higher improvements in favor of the experimental group. This result could suggest that virtual reality-based training might be more applicable for such patients than for more severely impaired patients. TRIAL REGISTRATION:ClinicalTrials.gov NCT01774669
    corecore