446 research outputs found
Delayed reperfusion deficits after experimental stroke account for increased pathophysiology.
Cerebral blood flow and oxygenation in the first few hours after reperfusion following ischemic stroke are critical for therapeutic interventions but are not well understood. We investigate changes in oxyhemoglobin (HbO(2)) concentration in the cortex during and after ischemic stroke, using multispectral optical imaging in anesthetized mice, a remote filament to induce either 30 minute middle cerebral artery occlusion (MCAo), sham surgery or anesthesia alone. Immunohistochemistry establishes cortical injury and correlates the severity of damage with the change of oxygen perfusion. All groups were imaged for 6 hours after MCAo or sham surgery. Oxygenation maps were calculated using a pathlength scaling algorithm. The MCAo group shows a significant drop in HbO(2) during occlusion and an initial increase after reperfusion. Over the subsequent 6 hours HbO(2) concentrations decline to levels below those observed during stroke. Platelets, activated microglia, interleukin-1α, evidence of BBB breakdown and neuronal stress increase within the stroked hemisphere and correlate with the severity of the delayed reperfusion deficit but not with the ΔHbO(2) during stroke. Despite initial restoration of HbO(2) after 30 min MCAo there is a delayed compromise that coincides with inflammation and could be a target for improved stroke outcome after thrombolysis
Recommended from our members
Seismic Behaviour of Cable-Stayed Bridges: A Review
Cable-stayed bridges represent backbones in the infrastructure networks and their adequate seismic response must be ensured. These structures present complex interactions between the deck, the cables, the towers and their foundation. This, in combination with the reduced damping and the outstanding slenderness of cable-stayed bridges, renders a unique dynamic response. A complete review on the state of knowledge about the seismic behaviour of cable-stayed bridges is presented here, with special attention to the analysis techniques. The current design trends in the seismic design and control of cable-stayed bridges are also presented
The baboon (Papio anubis) extracranial carotid artery: An anatomical guide for endovascular experimentation
BACKGROUND: As novel endovascular strategies are developed for treating neurological disease, there is an increasing need to evaluate these techniques in relevant preclinical models. The use of non-human primates is especially critical given their structural and physiological homology with humans. In order to conduct primate endovascular studies, a comprehensive understanding of the carotid anatomy is necessary. We therefore performed a detailed examination of the vessel lengths, lumen diameters and angles of origin of the baboon extracranial carotid system. METHODS: We characterized the extracranial carotid system often male baboons (Papio anubis, range 15.1–28.4 kg) by early post-mortem dissection. Photographic documentation of vessel lengths, lumen diameters, and angles of origin were measured for each segment of the carotid bilaterally. RESULTS: The common carotid arteries averaged 94.7 ± 1.7 mm (left) and 87.1 ± 1.6 mm (right) in length. The average minimal common carotid lumen diameters were 3.0 ± 0.3 mm (left) and 2.9 ± 0.2 mm (right). Each animal had a common brachiocephalic artery arising from the aorta which bifurcated into the left common carotid artery and right braciocephalic artery after 21.5 ± 1.6 mm. The vascular anatomy was found to be consistent among animals despite a wide range of animal weights. CONCLUSIONS: The consistency in the Papio anubis extracranial carotid system may promote the use of this species in the preclinical investigation of neuro-interventional therapies
Glibenclamide—10-h Treatment Window in a Clinically Relevant Model of Stroke
Glibenclamide improves outcomes in rat models of stroke, with treatment as late as 6 h after onset of ischemia shown to be beneficial. Because the molecular target of glibenclamide, the sulfonylurea receptor 1 (Sur1)-regulated NCCa-ATP channel, is upregulated de novo by a complex transcriptional mechanism, and the principal pathophysiological target, brain swelling, requires hours to develop, we hypothesized that the treatment window would exceed 6 h. We studied a clinically relevant rat model of stroke in which middle cerebral artery occlusion (75% < reduction in LDF signal ≤90%) was produced using an intra-arterial occluder. Recanalization was obtained 4.5 h later by removing the occluder. At that time, we administered recombinant tissue plasminogen activator (rtPA; 0.9 mg/kg IV over 30 min). Immunolabeling showed modest expression of Sur1 5 h after onset of ischemia, with expression increasing 7- to 11-fold (P < 0.01) by 24 h. Rats were administered either vehicle or glibenclamide (10 μg/kg IP loading dose plus 200 ng/h by constant subcutaneous infusion) beginning 4.5 or 10 h after onset of ischemia. In rats treated at 4.5 or 10 h, glibenclamide significantly reduced hemispheric swelling at 24 h from (mean ± SEM) 14.7 ± 1.5% to 8.1 ± 1.6% or 8.8 ± 1.1% (both P < 0.01), respectively, and significantly reduced 48-h mortality from 53% to 17% or 12% (both P < 0.01), and improved Garcia scores at 48 h from 3.8 ± 0.62 to 7.6 ± 0.70 or 8.4 ± 0.74 (both P < 0.01). We conclude that, in a clinically relevant model of stroke, the treatment window for glibenclamide extends to 10 h after onset of ischemia
Increased hemorrhagic transformation and altered infarct size and localization after experimental stroke in a rat model type 2 diabetes
<p>Abstract</p> <p>Background</p> <p>Interruption of flow through of cerebral blood vessels results in acute ischemic stroke. Subsequent breakdown of the blood brain barrier increases cerebral injury by the development of vasogenic edema and secondary hemorrhage known as hemorrhagic transformation (HT). Diabetes is a risk factor for stroke as well as poor outcome of stroke. The current study tested the hypothesis that diabetes-induced changes in the cerebral vasculature increase the risk of HT and augment ischemic injury.</p> <p>Methods</p> <p>Diabetic Goto-Kakizaki (GK) or control rats underwent 3 hours of middle cerebral artery occlusion and 21 h reperfusion followed by evaluation of infarct size, hemorrhage and neurological outcome.</p> <p>Results</p> <p>Infarct size was significantly smaller in GK rats (10 ± 2 vs 30 ± 4%, p < 0.001). There was significantly more frequent hematoma formation in the ischemic hemisphere in GK rats as opposed to controls. Cerebrovascular tortuosity index was increased in the GK model (1.13 ± 0.01 vs 1.34 ± 0.06, P < 0.001) indicative of changes in vessel architecture.</p> <p>Conclusion</p> <p>These findings provide evidence that there is cerebrovascular remodeling in diabetes. While diabetes-induced remodeling appears to prevent infarct expansion, these changes in blood vessels increase the risk for HT possibly exacerbating neurovascular damage due to cerebral ischemia/reperfusion in diabetes.</p
The Role of Hospitalists in the Acute Care of Stroke Patients
Stroke care has become progressively more complicated with advances in therapies necessitating timely intervention. There are multiple potential providers of stroke care, which traditionally has been the province of general neurologists and primary care physicians. These new players, be they vascular neurologists, neurohospitalists, internal medicine hospitalists, or neurocritical care physicians, at the bedside or at a distance, are poised to make a significant impact on our care of stroke patients. The collaborative model of care may be or become the most prevalent as physicians apply their distinct skill sets to the complex care of inpatients with cerebrovascular disease
Evolution of the Thrombolytic Treatment Window for Acute Ischemic Stroke
Ischemic stroke is a major cause of morbidity and mortality for which the only approved treatment in the acute setting is intravenous thrombolysis. The efficacy and safety of recombinant tissue plasminogen activator (rt-PA) have been firmly established within 3 h of symptom onset; however, few patients are eligible for treatment in this time window. Expanding the time for treatment has been challenging, but new evidence has demonstrated a modest statistical improvement in selected patients when rt-PA is administered within 4.5 h. This important finding hopefully will enable more patients to receive treatment and simultaneously provides an opportunity to reaffirm that the benefits of rt-PA diminish with time
Reperfusion injury following cerebral ischemia: pathophysiology, MR imaging, and potential therapies
INTRODUCTION: Restoration of blood flow following ischemic stroke can be achieved by means of thrombolysis or mechanical recanalization. However, for some patients, reperfusion may exacerbate the injury initially caused by ischemia, producing a so-called “cerebral reperfusion injury”. Multiple pathological processes are involved in this injury, including leukocyte infiltration, platelet and complement activation, postischemic hyperperfusion, and breakdown of the blood–brain barrier. METHODS/RESULTS AND CONCLUSIONS: Magnetic resonance imaging (MRI) can provide extensive information on this process of injury, and may have a role in the future in stratifying patients’ risk for reperfusion injury following recanalization. Moreover, different MRI modalities can be used to investigate the various mechanisms of reperfusion injury. Antileukocyte antibodies, brain cooling and conditioned blood reperfusion are potential therapeutic strategies for lessening or eliminating reperfusion injury, and interventionalists may play a role in the future in using some of these therapies in combination with thrombolysis or embolectomy. The present review summarizes the mechanisms of reperfusion injury and focuses on the way each of those mechanisms can be evaluated by different MRI modalities. The potential therapeutic strategies are also discussed
- …