186 research outputs found

    Effect of Wu-Wei-Gui-Shao decoction on complete Freund's adjuvant-induced arthritis rats

    Get PDF
    Purpose: To investigate the anti-rheumatic potential of Wu-Wei-Gui-Shao decoction (WGD) and its possible mechanism of action. Methods: Adjuvant arthritis (AA) rats were established using complete Freund's adjuvant. The rats were then given different doses of WGD (100, 200, and 400 mg/kg, for 28 days). The anti-arthritic effects of WGD were evaluated. Furthermore, the in vitro anti-arthritic effects of WGD and its related mechanisms were also determined in MH7A cells. Results: WGD (100 - 400 mg/kg) exhibited significant anti-rheumatic properties after 28 days of treatment, inhibiting paw edema in AA rats, reducing arthritis score and thymus and spleen index, and inhibiting the tumor necrosis factor (TNF)-α and the interleukin (IL)-6. In addition, the results of in vitro cell experiments also confirmed that WGD reduced the release of cytokines, as well as mRNA levels of matrix metalloproteinase (MMP) -2, -3, and -9. Conclusion: These findings suggest that WGD can be further developed as a traditional Chinese medicine to treat rheumatic arthritis. Keywords: Wu-Wei-Gui-Shao decoction, Complete Freund's adjuvant, Arthritis, Molecular mechanism, Traditional Chinese Medicin

    A SVM-based method for identifying fracture modes of rock using WVD spectrogram features of AE signals

    Get PDF
    In order to achieve the highly efficient and accurate identification of fracture modes including tension or shear fractures during rock failure, an intelligent identification method based on Wigner-Ville distribution (WVD) spectrogram features of acoustic emission (AE) signals was proposed. This method was mainly constructed by the following steps: Firstly, AE hits corre-sponding to tension and shear fractures were obtained through conducting the Brazilian disc test (tension fracture) and direct shear test (shear fracture) of limestone. Secondly, the WVD spectro-grams of these tensile-type and shear-type AE hits were respectively extracted and then trans-formed into the image features of relatively low-dimension as the sample set based on the gray-level cooccurrence matrix (GLCM) and histogram of oriented gradient (HOG). Finally, on the basis of the processed and classified sample set of the WVD spectrogram features, an identifica-tion model of rock fracture modes was established by a support vector machine (SVM) learning algorithm. To verify this method, the fracture modes of limestone subjected to biaxial compres-sion were identified by the method. The results showed that the method not only can greatly re-veal the fracture modes change from tension-dominated to shear-dominated fractures, but also has advantages over the RA-AF value method, such as applicability, accuracy and practicality

    The Effect of Nano-SiO2 Dispersed Methods on Mechanical Properties of Cement Mortar

    Get PDF
    Nano-SiO2 is added to the cement by using different dispersion methods, through the macroscopic mechanical properties to characterize its dispersion in the cement, it can be used to explore the best experimental process. The results show that the compressive strength of cement samples with different dispersion methods is different. When the physical dispersion method is used, the intensity is not improved, but the ultrasonic dispersion method is the smallest, and the dispersion of nano-SiO2 is -9.11%. When the surfactant is used as dispersant, the dispersion of nano-SiO2 by Naphthalene water reducer is the best, and the compressive strength is increased by 6.68%. By using polymeric dispersing agent, polyethylene glycol has a certain effect on the dispersion of nano-SiO2, but it has some damage to the cement (set-retarder, etc.). Based on the above experiments, we have obtained the best dispersion method, which uses ultrasonic dispersion, and also needs to add naphthalene water reducer

    Mutational and Transcriptomic Changes Involved in the Development of Macrolide Resistance in Campylobacter jejuni

    Get PDF
    Macrolide antibiotics are important for clinical treatment of infections caused by Campylobacter jejuni. Development of resistance to this class of antibiotics in Campylobacter is a complex process, and the dynamic molecular changes involved in this process remain poorly defined. Multiple lineages of macrolide-resistant mutants were selected by stepwise exposure of C. jejuni to escalating doses of erythromycin or tylosin. Mutations in target genes were determined by DNA sequencing, and the dynamic changes in the expression of antibiotic efflux transporters and the transcriptome of C. jejuni were examined by real-time reverse transcription-PCR, immunoblotting, and DNA microarray analysis. Multiple types of mutations in ribosomal proteins L4 and L22 occurred early during stepwise selection. On the contrary, the mutations in the 23S rRNA gene, mediating high resistance to macrolides, were observed only in the late-stage mutants. Upregulation of antibiotic efflux genes was observed in the intermediately resistant mutants, and the magnitude of upregulation declined with the occurrence of mutations in the 23S rRNA gene. DNA microarray analysis revealed the differential expression of 265 genes, most of which occurred in the intermediate mutant, including the upregulation of genes encoding ribosomal proteins and the downregulation of genes involved in energy metabolism and motility. These results indicate (i) that mutations in L4 and L22 along with temporal overexpression of antibiotic efflux genes precede and may facilitate the development of high-level macrolide resistance and (ii) that the development of macrolide resistance affects the pathways important for physiology and metabolism in C. jejuni, providing an explanation for the reduced fitness of macrolide-resistant Campylobacter

    Complete genome of Phenylobacterium zucineum – a novel facultative intracellular bacterium isolated from human erythroleukemia cell line K562

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Phenylobacterium zucineum </it>is a recently identified facultative intracellular species isolated from the human leukemia cell line K562. Unlike the known intracellular pathogens, <it>P. zucineum </it>maintains a stable association with its host cell without affecting the growth and morphology of the latter.</p> <p>Results</p> <p>Here, we report the whole genome sequence of the type strain HLK1<sup>T</sup>. The genome consists of a circular chromosome (3,996,255 bp) and a circular plasmid (382,976 bp). It encodes 3,861 putative proteins, 42 tRNAs, and a 16S-23S-5S rRNA operon. Comparative genomic analysis revealed that it is phylogenetically closest to <it>Caulobacter crescentus</it>, a model species for cell cycle research. Notably, <it>P. zucineum </it>has a gene that is strikingly similar, both structurally and functionally, to the cell cycle master regulator CtrA of <it>C. crescentus</it>, and most of the genes directly regulated by CtrA in the latter have orthologs in the former.</p> <p>Conclusion</p> <p>This work presents the first complete bacterial genome in the genus <it>Phenylobacterium</it>. Comparative genomic analysis indicated that the CtrA regulon is well conserved between <it>C. crescentus </it>and <it>P. zucineum</it>.</p

    Single-Trial EEG-fMRI Reveals the Generation Process of the Mismatch Negativity

    Get PDF
    Although research on the mismatch negativity (MMN) has been ongoing for 40 years, the generation process of the MMN remains largely unknown. In this study, we used a single-trial electro-encephalography (EEG)-functional magnetic resonance imaging (fMRI) coupling method which can analyze neural activity with both high temporal and high spatial resolution and thus assess the generation process of the MMN. We elicited the MMN with an auditory oddball paradigm while recording simultaneous EEG and fMRI. We divided the MMN into five equal-durational phases. Utilizing the single-trial variability of the MMN, we analyzed the neural generators of the five phases, thereby determining the spatiotemporal generation process of the MMN. We found two distinct bottom-up prediction error propagations: first from the auditory cortex to the motor areas and then from the auditory cortex to the inferior frontal gyrus (IFG). Our results support the regularity-violation hypothesis of MMN generation

    /UV Synergistic Aging of Polyester Polyurethane Film Modified by Composite UV Absorber

    Get PDF
    The pure polyester polyurethane (TPU) film and the modified TPU (M-TPU) film containing 2.0 wt.% inorganic UV absorbers mixture (nano-ZnO/CeO2 with weight ratio of 3 : 2) and 0.5 wt.% organic UV absorbers mixture (UV-531/UV-327 with weight ratio of 1 : 1) were prepared by spin-coating technique. The accelerated aging tests of the films exposed to constant UV radiation of 400 ± 20 µW/cm2 (313 nm) with an ozone atmosphere of 100 ± 2 ppm were carried out by using a self-designed aging equipment at ambient temperature and relative humidity of 20%. The aging resistance properties of the films were evaluated by UV-Vis spectra, Fourier transform infrared spectra (FT-IR), photooxidation index, and carbonyl index analysis. The results show that the composite UV absorber has better protection for TPU system, which reduces distinctly the degradation of TPU film. O3/UV aging of the films increases with incremental exposure time. PI and CI of TPU and M-TPU films increase with increasing exposure time, respectively. PI and CI of M-TPU films are much lower than that of TPU film after the same time of exposure, respectively. Distinct synergistic aging effect exists between ozone aging and UV aging when PI and CI are used as evaluation index, respectively. Of course, the formula of these additives needs further improvement for industrial application

    Molecular Characterization and Biological Function of a Novel LncRNA CRNG in Swine

    Get PDF
    Our previous study has showed that a novel gene is differentially expressed in the liver of cyadox-fed piglets, but its sequence and function are unknown. Here, rapid amplification of cDNA ends (RACE) and bioinformatics analysis showed that the novel gene is 953 bp without protein-coding ability and locates in chromosome 11. Hence, we identified the novel gene as long non-coding RNA (lncRNA) and named it cyadox-related novel gene (CRNG). Fluorescence in situ hybridization (FISH) showed that CRNG mainly distributes in cytoplasm. Moreover, microarray assay in combination with CRNG interference and overexpression showed that the differential genes such as ANPEP, KITLG, STAT5A, FOXP3, miR-451, IL-2, IL-10, IL-6, and TNF-α are mainly involved in viral and pathogens infection and the immune-inflammatory responses in PK-15 cells. This work reveals that CRNG might play a role in preventing the host from being infected by pathogens and viruses and exerting immune regulatory effects in the cytoplasm, which may be involved in prophylaxis of cyadox in piglets

    The Involvement of the Cas9 Gene in Virulence of Campylobacter jejuni

    Get PDF
    Campylobacter jejuni is considered as the leading cause of gastroenteritis all over the world. This bacterium has the CRISPR–cas9 system, which is used as a gene editing technique in different organisms. However, its role in bacterial virulence has just been discovered; that discovery, however, is just the tip of the iceberg. The purpose of this study is to find out the relationship between cas9 and virulence both phenotypically and genotypically in C. jejuni NCTC11168. Understanding both aspects of this relationship allows for a much deeper understanding of the mechanism of bacterial pathogenesis. The present study determined virulence in wild and mutant strains by observing biofilm formation, motility, adhesion and invasion, intracellular survivability, and cytotoxin production, followed by the transcriptomic analysis of both strains. The comparative gene expression profile of wild and mutant strains was determined on the basis of De-Seq transcriptomic analysis, which showed that the cas9 gene is involved in enhancing virulence. Differential gene expression analysis revealed that multiple pathways were involved in virulence, regulated by the CRISPR-cas9 system. Our findings help in understanding the potential role of cas9 in regulating the other virulence associated genes in C. jejuni NCTC11168. The findings of this study provide critical information about cas9's potential involvement in enhancing the virulence of C. jejuni, which is a major public health threat
    • …
    corecore