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In order to achieve the highly efficient and accurate identification of fracture
modes including tension or shear fractures during rock failure, an intelligent
identification method based on Wigner-Ville distribution (WVD) spectrogram
features of acoustic emission (AE) signals was proposed. This method was
mainly constructed by the following steps: Firstly, AE hits corre-sponding to
tension and shear fractures were obtained through conducting the Brazilian
disc test (tension fracture) and direct shear test (shear fracture) of limestone.
Secondly, the WVD spectro-grams of these tensile-type and shear-type AE hits
were respectively extracted and then trans-formed into the image features of
relatively low-dimension as the sample set based on the gray-level cooccurrence
matrix (GLCM) and histogram of oriented gradient (HOG). Finally, on the basis of
the processed and classified sample set of the WVD spectrogram features, an
identifica-tion model of rock fracture modes was established by a support vector
machine (SVM) learning algorithm. To verify this method, the fracture modes of
limestone subjected to biaxial compres-sion were identified by the method. The
results showed that the method not only can greatly re-veal the fracture modes
change from tension-dominated to shear-dominated fractures, but also has
advantages over the RA-AF value method, such as applicability, accuracy and
practicality.
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1 Introduction

Geological hazards such as landslides, rock collapses (Figure 1A) and rockbursts
(Figure 1B) are rock destabilization phenomena caused by the evolution of rock fracture.
The types of rock fractures can be mainly divided into tensile fracture, extensional shear
fracture and compressional shear fracture (Etheridge, 1983; Zhou et al., 2022).

These fracture characteristics can be descripted as the following: tensile fracture is
characterized by the maximum tensile stress perpendicular to the fracture surface;
extensional shear fracture, also known as a mixed fracture, is composed of tension and
shear stresses existing with the fracture surface; compressional shear fracture (equal to shear
fracture) is consists of compressive and shear stresses distributed with the fracture surface
(Zhou et al., 2016). Moreover, a series of research found there are the distinguished change
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(from tension-dominated fracture to shear-dominated fracture) of
the fracture modes in the rock failure processes (Hou et al., 2009;
Sagong et al., 2011). Therefore, the identification of rock fracture
modes (tension/shear fracture) can provide useful information for
accurately predicting destabilization of rocks.

There are many randomly distributed microcracks inside the
rocks. When rock is subjected to external loads, the microcracks
inside the rocks are continuously generated, expanded, and finally
penetrated to form rock fractures. To study the mechanical
behaviour and fracture modes of rock damage processes,
technical means of numerical simulation (Niu et al., 2023a),
nuclear magnetic resonance (NMR) (Bi et al., 2023), X-ray
computed tomography (CT) (Xiao et al., 2021; Xiao et al., 2022)
are used, while rock-like materials are also in focus (Bi et al., 2020).
In addition, rock damage processes will release local energy in the
form of elastic waves inside the rocks, which is called rock acoustic
emission (AE) phenomenon (Hardy, 1972). In recent years, AE
monitoring has been used to record the cracking process in flawed
rocks (Zhang and Zhou, 2020; Niu et al., 2023b), to record the
fracture process in shales under anisotropic stresses (Niu et al.,

2023c), and to forecast time-of-instability in rocks under complex
stress conditions based on the spatio-temporal AE technique (Niu
and Zhou, 2021). AE monitoring has emerged as an acoustic tool
capable of monitoring rock damage processes. It has been studied
that the AE signals generated by tensile fracture and shear fracture
have different characteristics (Ohno and Ohtsu, 2010; Wang et al.,
2018). According to these different characteristics, the AE signals
can be divided into tensile-type signals and shear-type signals.
Therefore, the evolution of rock fracture modes can be analyzed
by identifying the types of AE signals during rock fracture.

The common AE-based methods currently used to identify rock
fracture modes are AE parameter-based method (Ohno and Ohtsu,
2010) and the moment tensor analysis (Gilbert, 1971). The AE
parameter-based method refers to using the parameters of AE in the
process of rock fracture to discriminate the fracture types of rocks, in
which the most widely used discrimination method is the
proportion of the rise angle (RA) and the average frequency (AF)
(hereinafter referred to as the RA-AF value method) (Shiotani et al.,
2001). Ohno and Ohtsu compared the gradual transition of cracks
from tension to shear using the RA-AF value method and the

FIGURE 1
(A) Rock collapse in Guilin, China, (B) rockburst at Jinping Hydropower Station in China.

FIGURE 2
(A) Brazilian disc samples, (B) direct shear test samples, (C) the true triaxial test system.
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simplified Green’s function for moment tensor analysis (SiGMA),
and the analysis showed that the results of the two methods were in
high agreement (Ohno and Ohtsu, 2010). Aggiles used the AE
parameter-based method to analyze the AE signals generated
during the fracture of concrete, marble and granite, respectively
(Aggelis, 2011; Aggelis et al., 2013), and he obtained the fracture
mechanism of these materials from tensile microcracking to brittle
macroscopic cracking and summarized the respective waveform
characteristics of AE tension and shear signals (Li et al., 2022).
By analyzing the parametric characteristics of AE signals in a series
of three-point bending tests and straight shear tests, Wang et al.
concluded that tensile-type AE signals are characterized by higher
AF and lower RA (Wang et al., 2016). In comparison, shear-type AE
signals are characterized by lower AF and higher RA (Wang et al.,
2016). Although this method is simple to calculate, it considerably
relies on the ratio k, which affects the accuracy of fracture type
identification.

The moment tensor analysis was first applied to AE signal
analysis by Gilbert (1971) and was widely adopted because of its
ability to describe more objectively the fracture modes. Ohtsu (1995)
combined the deconvolution analysis andmoment tensor analysis to
analyze and determine the location and fracture type of AE sources
in 3D elastomers. Chang and Lee (2004) analyzed the cracking
damage mechanism of rocks under triaxial compression based on
the moment tensor analysis of AE signal-based method. It was
shown that the shearing effect of rocks under triaxial compression
conditions becomes more pronounced as the surrounding pressure
increases. Ren et al. (2019) analyzed the AE signals using an
improved time-difference localization algorithm and moment
tensor theory to reveal the fine view crack expansion mechanism
of tensile fractures, such as crack location, type, and expansion
direction in the Brazilian disc test. Wang (2017) analyzed the AE
signals of the fracture extensile process in different brittle shale
fractures to reveal the extensile laws of tensile-type fracture, shear-
type fracture and mixed-type fracture in brittle shale, then and
established the AE propagation fluctuation equation and moment
tensor discrimination method for crack propagation. The moment
tensor analysis can identify rock fracture modes and reveal the crack
propagation. However, it is more demanding in terms of sensor
arrangement and cumbersome in terms of calculation.

The above studies show that although all two methods, with the
help of AE technology, can analyze the fracture modes of rocks and
their crack propagation, each has its drawbacks. Therefore, it is
essential to propose new methods to identify rock fracture modes.

This paper proposes an intelligent identification method of rock
tension and shear fractures based on WVD spectrogram features of
AE signals and SVM machine learning algorithm. The main
contribution of this study can be summarized as follows: In
Section 2, AE signals produced during tension and shear
fractures during the Brazilian disc test and direct shear test of
limestone are acquired and analyzed; In Section 3, the WVD
spectrogram features processed by GLCM and HOG algorithms
are extracted, and then the identification model for rock fracture
modes by SVM machine learning algorithm is established. The
feasibility and advancement of the proposed method are
systematically demonstrated by a case study of limestone failure
subjected to biaxial compression, compared with the RA-AF value
method in Section 4; Section 5 concludes the main efforts.

2 Test

2.1 Rock samples

The rock samples were made of limestone from Wuhan
Hanyang stone factory. Before the laboratory tests, the samples
were strictly screened and polished in accordance with the rules of
rock mechanics experiments, and the processed samples are shown
in Figures 2A, B.

2.2 Test system

To obtain the AE signals generated by rock tensile fracture and
shear fracture, the Brazilian disc test and the direct shear test of
limestone were carried out using the true triaxial test system shown
in Figure 2C. The test system mainly includes high-pressure servo-
controlled true triaxial test machine (independently developed by
Guangxi University), bright lights, and deformation meter, etc.

2.3 Test scheme

Brazilian disc test loading scheme: Firstly, the rock sample is
placed on a specially designed Brazilian disc test fixture. Then, the σz
direction is pre-pressurized by 3 MPa. After the test equipment is
modulated perfectly, the AE system and test machine loading
devices were turned on simultaneously. Finally, the sample is
loaded at a rate of 100 N/s until it is destroyed, as described in
Figure 3A.

The direct shear test loading scheme: A rock sample of 1 MPa is
first applied in the σz direction and loaded at a rate of 100 N/s in the
σx direction until the sample is destroyed, as shown in Figure 3B.

2.4 AE signals acquisition

The AE acquisition device is the third generation of the AE
system produced by PAC, which consists of a power supply, main
board, processor and eight acquisition channels, each of which can
automatically display, record and store AE signals. The AE sensors
are R1.5I-LP-AST type sensors with a center frequency of 14 kHz
and a frequency range of 5–20 kHz. The preamplifier is a 2/4/6 type
amplifier manufactured by PAC, which has three stages and can
amplify the AE signals by 20 dB, 40 dB and 60 dB, respectively. To
accurately obtain abundant AE signals, the AE sensor (e.g., 1 sensor
in Brazilian disc test and 2 sensors in direct shear test) was arranged
as the Figures 3C, D. With reference to some studies of the rock
mechanics studies using AE monitoring, the parameters of the AE
system were set as shown in Table 1 (Su et al., 2020; Su et al., 2023).

2.5 Test results

The fracture modes of rock samples and their resulting AE
signals were obtained from the above two types of tests, which were
used to further analyze the AE signals of tension and shear and
compare the difference between both.

Frontiers in Earth Science frontiersin.org03

Qin et al. 10.3389/feart.2023.1206269

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1206269


Figures 3C, D shows typical fracture surfaces of rock samples
after the Brazilian disc test and the direct shear test. From the
knowledge of elastic mechanics, it is known that the Brazilian disc
test is a kind of indirect tensile test in which the rock sample is
damaged by the internal action of tensile force. The disc is subjected
to pressure applied from above and below. Since the tensile strength
of the rock is much less than the compressive strength, the disc will
be destructed by the tensile stress exceeding the tensile strength. In
this test, the rock sample was fractured into two semi-circles under
the tension action, and the fracture surfaces with rough and uneven
have not any particles of debris. In contrast, in the direct shear test,
the rock sample was divided into two halves under the action of
horizontal shear, and the fracture surfaces showed undulating gullies

with a large amount of white powder-like particles, caused by
considerable friction action.

AE hits, one of the key parameters used in the analysis of AE
signals, are defined as exceeding a threshold and causing a channel
to acquire data in the AE system, and can be used to greatly reveal
the activity during rock failure process (Ohno and Ohtsu, 2010;
Unnþórsson, 2013).

In the Brazilian disc test, the AE hits were close to zero,
indicating that there was almost no crack generation inside the
rock sample at the beginning of loading. When the tensile stress
applied in the rock sample continually increased, the AE hits
gradually raised, and dramatically surged to a high level caused
by the sudden macroscopic fracture of the rock sample as the
loading stress exceeded the tensile strength (Figures 4A, B). In the
direct shear test, the AE hits were low active, revealing that slight
cracks were generated with the beginning loading of the rock
sample. With the increasing shear force, the activity of AE hits
was gradually enhanced, and a sudden increase occurred in the
AE hits as the shear force reached the shear strength
(Figures 4C, D).

In summary, the number of AE hits in the Brazilian disc test was
low at the beginning, and there was a sudden increase in AE hits at
the time of rock failure, indicating that rock tensile fracture is an
immediate brittle fracture. On the contrary, the AE hits were
continuously generated throughout the direct shear test, and a
sudden increase appears in AE hits at the time of rock failure,
suggesting that shear fracture was a form of fracture in which cracks
are continuously generated, expanded and eventually formed on a
large scale.

FIGURE 3
Schematic diagram of sensor arrangement and rock sample loading methods: (A) the Brazilian disc test, (B) the direct shear test. (C) Typical fracture
sample of the Brazilian disc test, (D) Typical fracture sample of the direct shear test.

TABLE 1 Parameter setting of AE system.

Parameter setting of AE system Value

Threshold 40 dB

Pre-amplifier gain 40 dB

Sampling rate 1MSPS

Trigger value 256

Wave length 1 k (1,024)

PDT 50 μs

HDT 100 μs

HLT 200 μs
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3 The proposed method

3.1 WVD spectrogram features

3.1.1 Principle of WVD
The concept of the WVD, originate from the field of quantum

mechanics, was introduced by Wigner in 1932. In 1948, Ville (1948)
first applied it to signal analysis. In the time-frequency domain
analysis of signals, it is essential for selecting a rational window
function, which should not be too long or short, respectively
resulting in no condition of the smooth assumption of signals
within the window and the deterioration of the resolution of the
frequency domain, and further decreasing the analysis accuracy. The
WVD combines the one-dimensional time and frequency functions

into a two-dimensional function that can reflect the signal
characteristics (such as the frequency and energy versus time)
from the perspective of time and frequency. Therefore, this
algorithm contributes to solving the problem of difficultly
selecting a rational window function in time-frequency domain
analysis.

Let the continuous time signal be x(t) C, t R. Then the WVD
of the signal is defined as

Wx t,ω( ) � −x t + τ

2
( )x* t − τ

2
( )e−j2πωτ dτ (1)

where t denotes time and ω denotes frequency. The definition is
expressed as the signal of a past moment multiplied by the signal of a
future moment and then the Fourier transform of its time difference

FIGURE 4
AE hit evolution: (A) LBD-S-1 in the Brazilian disc tests, (B) LBD-S-2 in the Brazilian disc tests, (C) LDS-1 in the direct shear tests, (D) LDS-2 in the
direct shear tests.

TABLE 2 Results comparison based on the proposed method and the RA-AF value method in the Brazilian disc test (LBD-S-2).

Identification method k (AF/RA) The proportion of AE signals (%)

Tension type Shear type

The RA-AF value method 10 93.5 6.5

50 87.8 12.2

90 79.0 21.0

The method proposed — 94.8 5.2
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τ, which overcomes the shortcomings of contradiction between time
and frequency resolutions.

3.1.2 WVD spectrogram
The AE data collected during the test is the original DTA file.

The process of generating the WVD spectrogram using the DTA file
is as follows. Firstly, import it into AEwin, an AE processing
software, to replay it. Secondly, use the conversion function of
AEwin software to convert it into TXT files of waveform stream
and export it. Finally, apply the prepared WVD program to process
the TXT file in the MATLAB platform and plot it into WVD
spectrogram. One typical WVD spectrogram in each Brazilian
disc and each direct shear test is selected as the detailed
description as illustrated in Figure 5.

From Figure 5, it can be seen that in the Brazilian disc test, the
frequency band of the WVD spectrogram of the tensile signals was
concentrated in the range of 0–80 kHz, with lower amplitude and
irregularity shape overall. In the direct shear test, the frequency band
of the WVD spectrogram of the shear signals was distributed in the
range of 10–100 kHz, with higher amplitude and layered shape
overall.

3.1.3 GLCM and HOG features of WVD
spectrogram

Texture features of images, as a visual feature reflecting
homogeneous phenomena in images, can be used to distinguish
different kinds of images. HOG is a feature description algorithm
commonly used in the field of image processing and recognition to
obtains the local variation of the image texture by constructing a

gradient directional histogram over a local area, reflecting the shape
and edge information of the image (Qu et al., 2011). There are
significant differences in the shape and edge information of the
WVD spectrogram of the tension and shear signals are significantly
different and the HOG feature helps in image differentiation. GLCM
is an image texture feature that converts gray-level values into
texture information. The GLCM is defined as the joint
probability density of two positional pixels, which is a second-
order statistical feature of the image that characterizes the
distribution of pixels at the same gray-level in terms of adjacent
direction, interval distance, and amplitude variation. Thus, the
GLCM is able to reflect information about the texture variation
of the diagram (Liu et al., 2016). GLCM features combined with
HOG features can further improve the robustness of the WVD
spectrogram classification.

3.2 SVM machine learning

SVM is a statistical learning model built on the principles of VC
dimensional theory and structural risk minimization. These
principles aim to optimize the best balance (achieve a model with
strong generalization ability) between model complexity and
learning ability by using a small number of samples. The
theoretical basis of SVM is statistical learning theory, whereas
different from traditional statistical methods, the SVM method
need not to process the traditional induction and deduction,
rather than directly implements the predictions on testing
samples using training samples, which simplifies the classification

FIGURE 5
WVD spectrograms: (A) the Brazilian disc test, (B) the direct shear test.
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and regression problems (Hearst et al., 1998). Thus, SVM possesses
advantages, characterized by the ability to obtain globally optimal
solutions, good adaptability to complex problems of high
dimensionality, small samples, and nonlinearity, and high
generalization ability. In addition, above-mentioned advantages
in SVM can considerably overcome the limitation of insufficient
data in this paper.

The algorithm ideal of SVM machine learning is detailly
descried as follows: to separate the two types of data, the means
of the inner product kernel function in support vector machine is
applied for transforming vector dimensions from low to higher, and
then construct two parallel hyperplanes for the separation of both
data; moreover, When the distance between these two hyperplanes is
maximum, a new hyperplane (namely, the maximum spacing
hyperplane) parallel to these two planes is established through
their maximum distance midpoints.

Furthermore, SVM implementation mainly includes: suppose
there are data set (x1,y1). . .(x1,y1). . .(xi,yi). . .(xn,yn), where xi is a
p-dimensional real vector. To distinguish the classes to which xi
belongs, we define yi as either 1 or -1, where xi with yi =1 belongs to
one class, and yi =-1 belongs to the other. SVM is able to find the
“maximum spacing hyperplane” that separates two different types of
data points and then maximize the distance between the hyperplane
and the nearest point xi. Consequently, any hyperplane can be
represented as:

w • x + b � 0 (2)
where w is the normal vector of this hyperplane and the parameter
b

‖w‖ denotes the distance from the origin point to the hyperplane
along the normal vector w.

Using |w • x+b|=1 to denote these two hyperplanes parallel to
each other, the distance between the two hyperplanes is 2

‖w‖. When
║w║ takes the minimum value, the distance between the two
hyperplanes is maximum. To keep the data points outside the
interval region of the hyperplane, w • x+b≥1 when yi=1 and
w • x+b≤1 when yi =-1, i.e., yi (w·x+b)≥1 for any i. Thus, the
solution of the maximum interval hyperplane is translated into
the taking value of b for any i in yi (w • x+b)≥1 conditions when
║w║ is smallest.

3.3 The RA-AF value method

The RA-AF value method provides accurate and quantifiable
identification of rock fracture modes and has been included in the
Japanese code for concrete AE monitoring (JCMS-III B5706)
(Author Anonymous, 2003).

An effective AE signal waveform and parameter characteristics
are shown in Figure 6A.When the rock undergoes tensile fracture,
the rise time of the AE signal waveform is short, the rise angle is
large, and its RA value is small. When the rock generates shear
fracture, the AE waveform has a short time to reach the maximum
point of amplitude (i.e., short rise time), the rise angle is small, and
its RA value is large (Siracusano et al., 2016; Liu et al., 2020).

The equation for the RA value of AE signals is defined as:

RA � RT

A
(3)

where RT is the rise time of the AE waveform, ms; A is the amplitude
of the AE waveform, V; RA is the reciprocal of the tangent of the rise
angle, ms/V (Yu et al., 2022).

The AF can be calculated by the following equation:

AF � C

D
(4)

where AF is the average frequency of the AE signal, C is the ring
counts and D is the duration of the AE signal.

As shown in Figure 6B, the identification principle of the types
(tension/shear) of rock fracture in the RA-AF value method can be
characterized by which the AE signal is shear fracture when the
signal lies below the demarcation line k (k=RA/AF) and tension
fracture when it lies above the demarcation line k. Therefore, the
choice of the demarcation line k has a significant influence on the
identification results. The commonly used demarcation lines are
k=10, 50 and 90.

3.4 Implementation steps of the proposed
method

The proposed method is implemented in the following steps:

1. AE signals acquisition: Brazilian disc test and direct shear test of
rocks are carried out to acquire AE hits for tension and shear
fractures, and selected as original sample data, respectively;

2. WVD spectrogram calculation: The WVD spectrograms of the
AE signals are obtained by the WVD principle;

3. Spectrogram features extraction: Based on the WVD
spectrograms, the GLCM and HOG features are extracted as
the image texture samples for training and testing SVM
classification model (Haralick et al., 1973; Dalal and Triggs,
2005);

4. Training SVM model: The SVM model is trained by the training
samples on the basis of parameters set, such as kernel functions,
the penalty parameter C and the kernel function parameter σ;

5. Model Verification: In this paper, the SVM classification model is
verified by using the testing samples. If the accuracy of the
classification model meets the requirements, the model is
saved. On the contrary, the model needs to be constructed
according to steps 1 to 4, and further the verification.

The flow chart of rock tension and shear identification method is
shown in Figure 7.

3.5 Validation of the proposed method

The method in this paper is verified by the following steps:

6. AE signals acquisition: Several AE hit signals for tension and
shear fractures were obtained using the AE signals collected in
the Brazilian disc test of LBD-S-1 and LBD-S-2 and the direct
shear test of LDS-1 and LDS-2 (Figure 8);

7. WVD spectrogram calculation: The signal processing toolbox in
MATLAB was used to process the AE hit signals during the
fracture phase and to plot the WVD spectrogram. WVD
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spectrograms (65 each) of the Brazilian disc test numbered LBD-S-
1 (fracture phase: 90–98 s) and the direct shear test numbered
LDS-1 (fracture phase: 1,230–1,300 s) were selected for
calculation. In addition, WVD spectrograms (50 each) of the
Brazilian disc test numbered LBD-S-2 (fracture phase: 125–133 s)
and the direct shear test numbered LDS-2 (fracture phase:
876–916 s) were selected for calculation. Figure 8 shows part of
the WVD spectrograms for the tension and shear fracture phases;

8. Spectrogram features extraction: The GLCM and HOG features
based on the WVD spectrograms from the above tests were
extracted as the training (e.g., LBD-S-1 and LDS-1) and testing
(e.g., LBD-S-2 and LDS-2) samples of the SVM model;

9. Training SVM model: The kernel function of radial basis
function (RBF) was selected, the kernel function parameter σ
was set to 128, and the penalty parameter C was set to 32. Based
on the training samples composed of the GLCM and HOG
features, the automatical model for identifying fracture modes
of rock was established by the SVM learning algorithm;

10. Model verification: The effectiveness of the SVM classification
model depended on whether its classification accuracy can meet
the requirements. The established SVM classification model was
validated using the 100 testing samples (50 each in tension and
shear samples) created. The validation results showed that
48 and 47 samples in tension and shear test were successfully

FIGURE 6
(A) Schematic diagram of AE waveform and parameter characteristics, (B) The schematic diagram of identification for rock fracture modes (tension/
shear) using the RA-AF value method.

FIGURE 7
Flow chart of rock tension and shear identification method (Liu et al., 2019).
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identified, respectively, and those accuracy rates were
individually reached to 96.0% and 94.0%. Therefore, the
overall accuracy of the SVM model is a high level of 95%.

Among rock tension and shear fracture identification methods
based on the AE signals, the parametric analysis method based on
the RA-AF value method is the most widely used. In this section, the
identification method described in this paper and the RA-AF value
method were used to identify the tension and shear fractures of the
AE hit signals collected throughout the Brazilian disc test (LBD-S-2),
respectively. The identification results of the above two methods are
shown in Table 2. Comparing the results of the two methods, the

method described in this paper does not depend on the choice of k
value (k=AF/RA), and its recognition accuracy is higher than the
RA-AF value. Therefore, the method is more advanced and superior.

4 A case study

The stress state of underground rocks can be classified into uniaxial,
biaxial and triaxial state (Cai et al., 2020). In underground projects, the
unexcavated rock is in a triaxial stress state (Zhang et al., 2023). During
excavation, the stresses in the rock at the project boundary are
redistributed and are in a static biaxial stress state, i.e., the

FIGURE 8
WVD spectrograms in the tension and shear fractures: (A) tension fracture from LBD-S-1, (B) tension fracture from LBD-S-2, (C) shear fracture from
LDS-1, (D) shear fracture from LDS-2.
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minimum principal stress σ3 drops to zero (Wang et al., 2019; Du et al.,
2021). The rocks at the project boundary are highly susceptible to rock
failure due to construction effects. Therefore, the studies of the failure
behaviour of biaxial rocks are important for the understanding and
prevention of rock hazards. It has been shown that during the biaxial
compression test of rocks, the rock fracture in the early stage of the test
is dominated by tensile fracture, and the AE signals collected at this time
is mainly the tensile signals (Hou et al., 2009; Sagong et al., 2011). With
the increasing load, the form of rock fracture gradually transforms from
tension-dominated fracture to shear-dominated fracture. When the
load reaches its maximum value, the rock undergoes final failure caused
by shear crack penetration, and the AE signals generated at the time is
mainly the shear signals. To further verifying the advancement of the
method proposed in this paper, the fracture process of intact rock
during the biaxial compression test is identified using the method and
the RA-AF value method.

4.1 Test scheme

The biaxial compression test was carried out using the high-
pressure servo-controlled true triaxial test system (Figure 2C). The
rock samples were limestone processed at Hanyang stone factory in
Wuhan, with dimensions of 100 mm × 100 mm × 200 mm (L ×W ×
H). The type of AE sensors for the test was R1.5I-LP-AST. The
arrangement of the sensors, the loading method and the loading
path for this test are shown in Figure 9. The intermediate principal
stress σ2 is 30 MPa, and the maximum principal stress σ1 is loaded at
a rate of 0.5 MPa/s.

4.2 Test results

Figure 10 visualises the fracture development process during the
biaxial compression test of limestone. Sample fracture occurred
mainly in the vicinity of the free surface at the early stage of
loading, dominated by tensile cracks parallel to the free surface.
At the middle stage of loading, the tensile cracks were expanding
inward with the increasing load, and the tensile cracks formed a

certain small angle with the free surface, and the tensile cracks were
still dominant at this time. At the late stage of the test, the sample
fracture changed from tension-dominated to shear-dominated, and
the shear cracking of the sample increased significantly. Until the
load reached its maximum value, the shear crack penetrated a
macroscopic fracture, leading to rock failure.

4.3 Fracture modes identification

After Understanding the evolution of fracture modes in biaxial
compression tests of limestone, the method of this paper and the
RA-AF value method be used to identify fracture modes of this test
and compare the identification results of both. Three tests under the
same conditions were carried out and the most representative set of
results was selected for analysis.

4.3.1 The RA-AF value method
Given there not is a reference for the demarcation line of rocks

during biaxial compression, k=50 was chosen as the demarcation
line in this paper. The classification results of the AE signals of
limestone subjected to the biaxial compression test are depicted in
Figure 11.

The identification results of the rock fracture modes based on
the RA-AF value method were divided into 5 s as a period, the
percentage of identified tension/shear signals to overall signals in
each period was calculated to obtain the evolution of the tension and
shear fracture of the rock. The statistical results are shown in
Figure 13A.

As shown in Figure 13A, the identified AE signals in the early
stage of limestone failure subjected to biaxial compression test were
dominated by the tensile type signals, which account for about 90%
of the total signals, and the shear type signals are only about 10%.
With the increase of load, the percentage of tensile type signals
decreased rapidly, and after 40 s, the percentage of shear type signals
was more than half and still increasing. Subsequently, the percentage
of shear signals was greater than that of tension signals, and the
percentage of tension signals increased slightly in the late period
of test.

FIGURE 9
The biaxial compression test of limestone: (A) arrangement of sensors, (B) loading method, (C) loading path.
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4.3.2 The proposed method
The AE signals from the limestone failure under biaxial

compression were used to generate WVD spectrograms. And
then, the GLCM and HOG features of the WVD spectrogram
were extracted and input to a trained SVM classification model
for identification and classification. Figure 12 shows the WVD
spectrogram and the identification results of the AE signals at
2.08 s, 21.29 s, 61.75 s, 109.84 s, 135.47 s, 143.75 s, 146.11 s, and
148.70 s, respectively.

As illustrated in Figure 12. In the early stage of test, the identified
AE signals were tensile, indicating the rock tension fractures. In the
late stage of test, the identified AE signals were shear, correlated with
the rock shear fractures. In order to reflect the change trend of
tension and shear fractures more directly, the percentage evolution

of identified tension/shear signals to overall signals in each period of
5 s was analyzed, as shown in Figure 13B.

Figure 13B shows the evolution of the percentage of tension and
shear signals identified using the proposedmethod. In the early stage
of test, the identified AE signals are dominated by the tensile type
signals, which account for about 90% of the total signals. As the load
increased, the percentage of tensile type signals decreased, but it was
still dominated. After 90 s, the percentage of shear type signals was
more than half and increasing continuously. When 135 s, all of the
AE signals were shear signals. On the eve of sample failure, the
proportion of tension signals increased, but that of shear signals was
still greater than 80%.

4.3.3 Method comparison
Comparing the evolution of the proportion of AE signal types

(tension/shear) identified by the above two methods, it can be
concluded that both of them are capable of the description of the
fracture modes of rocks subjected to biaxial compression, especially
for a gradual change from tension-dominated fracture to shear-
dominated fracture. Moreover, the evolutionary characteristics of
the rock failure described are consistent with the phenomena
observed in the test and previous studies (Hou et al., 2009; Sagong
et al., 2011). However, there is a slight difference in the fracture modes
identification between the two methods. Based on the method
proposed in this paper, the period dominated by the tensile signals
is 0–90 s, i.e., the early and middle periods of the test. Applied for the
RA-AF value method, the period dominated by the tensile type signals
is 0–40 s, i.e., the early stage of the test. According to previous
research, rock fractures are dominated by tension fracture in the
middle stage of rock failure under biaxial compression, and then the
rock fracture modes gradually change from tension to shear fracture
in the later stage, corralled with the transform of rock mechanics
behavior from elastic to elastoplastic. Therefore, compared with the
RA-AF value method, the method in this paper has higher recognition
accuracy and superior performance.

FIGURE 10
The fracture process of limestone during the biaxial compression: (A) sample before test, (B) tension fracture generation in the early stage of the test,
(C) tension crack extension in the middle stage of the test, (D) transformation of tension fracture to shear fracture in the later stage of the test, (E) rock
sample failure.

FIGURE 11
The classification results of the AE signals of limestone subjected
to biaxial compression test.
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FIGURE 12
Classification results of WVD spectrogram at different time in the biaxial compression test.

FIGURE 13
Evolution of the percentage of tension and shear signals identified using (A) the RA-AF value method, (B) the proposed method.
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5 Conclusion

To achieve the accurate and effective identification of the
rock fracture modes (tension/shear) by AE monitoring
technology, this paper proposed a SVM-based method for
identifying fracture modes of rocks based on WVD
spectrogram features (processed by CLCM and HOG) of AE
signals acquired by the Brazilian disc test (tension fracture) and
the direct shear test (shear fracture). The following conclusions
can be drawn:

WVD spectrogram is 3-dimensional information about time,
frequency and energy, capable of a good description for non-
steady AE signals. The AE-based WVD spectrograms of rock
tension and shear fractures are significantly different. The results
showed that there are essential distinguishments in the
distribution shape of both WVD spectrograms, such as the
tension with lower amplitude and irregular shape overall and
the shear with higher amplitude and layered shape overall.
Additionally, it is indicated that WVD spectrogram features,
processed by the GLCM and HOG methods for the
dimensional decrease of features from three to two under the
slight loss of important information, can greatly characterize and
classify the difference between two-types AE signals produced by
tension and shear fractures of rocks.

A SVM-based method for identifying fracture modes of rocks
using the WVD spectrogram features of AE signals is feasible. This
method proposed was systematically verified and compared with the
RA-AF valuemethod, and then results showed that the proportion of
AE signals (identified by the proposed method) produced by tension
fracture in the Brazilian disc test reached 94.8%, higher than the RA-
AF value method. Moreover, the percentage evolution of tension-
shear fractures of this method was more well correlated (later
transition from tension-dominated to shear-dominated fractures)
with the failure process from elasticity to plasticity of rocks subjected
to biaxial compression, compared with the RA-AF value method.
Therefore, the proposed method has advantages over the RA-AF
value method, helpfully advancing the more accurate and early
warning for rock failure related to the transform of tension-shear
fractures.

This proposed method can achieve the accurate identification
for the fracture modes of rocks, then improve the prediction and
warning of rock failure. However, for the method, there are a series
of section improved in the future, i.e., types of rocks and engineering
applications.
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