61 research outputs found

    Amplitude dynamics of charge density wave in LaTe3_3: theoretical description of pump-probe experiments

    Full text link
    We formulate a dynamical model to describe a photo-induced charge density wave (CDW) quench transition and apply it to recent multi-probe experiments on LaTe3_3 [A. Zong et al., Nat. Phys. 15, 27 (2019)]. Our approach relies on coupled time-dependent Ginzburg-Landau equations tracking two order parameters that represent the modulations of the electronic density and the ionic positions. We aim at describing the amplitude of the order parameters under the assumption that they are homogeneous in space. This description is supplemented by a three-temperature model, which treats separately the electronic temperature, temperature of the lattice phonons with stronger couplings to the electronic subsystem, and temperature of all other phonons. The broad scope of available data for LaTe3_3 and similar materials as well as the synergy between different time-resolved spectroscopies allow us to extract model parameters. The resulting calculations are in good agreement with ultra-fast electron diffraction experiments, reproducing qualitative and quantitative features of the CDW amplitude evolution during the initial few picoseconds after photoexcitation.Comment: 21 pages, 14 figures; this version is almost identical to the published version; comparing to the earlier arXiv submission, current version contains a new figure (Fig.10), and a broader discussion of theoretical results and approximation

    Self-similar dynamics of order parameter fluctuations in pump-probe experiments

    Full text link
    Upon excitation by a laser pulse, broken-symmetry phases of a wide variety of solids demonstrate similar order parameter dynamics characterized by a dramatic slowing down of relaxation for stronger pump fluences. Motivated by this recurrent phenomenology, we develop a simple non-perturbative effective model of dynamics of collective bosonic excitations in pump-probe experiments. We find that as the system recovers after photoexcitation, it shows universal prethermalized dynamics manifesting a power-law, as opposed to exponential, relaxation, explaining the slowing down of the recovery process. For strong quenches, long-wavelength over-populated transverse modes dominate the long-time dynamics; their distribution function exhibits universal scaling in time and space, whose universal exponents can be computed analytically. Our model offers a unifying description of order parameter fluctuations in a regime far from equilibrium, and our predictions can be tested with available time-resolved techniques

    Ultrafast manipulation of mirror domain walls in a charge density wave

    Get PDF
    Domain walls (DWs) are singularities in an ordered medium that often host exotic phenomena such as charge ordering, insulator-metal transition, or superconductivity. The ability to locally write and erase DWs is highly desirable, as it allows one to design material functionality by patterning DWs in specific configurations. We demonstrate such capability at room temperature in a charge density wave (CDW), a macroscopic condensate of electrons and phonons, in ultrathin 1T-TaS2_2. A single femtosecond light pulse is shown to locally inject or remove mirror DWs in the CDW condensate, with probabilities tunable by pulse energy and temperature. Using time-resolved electron diffraction, we are able to simultaneously track anti-synchronized CDW amplitude oscillations from both the lattice and the condensate, where photo-injected DWs lead to a red-shifted frequency. Our demonstration of reversible DW manipulation may pave new ways for engineering correlated material systems with light

    Second harmonic generation as a probe of broken mirror symmetry

    Get PDF
    The notion of spontaneous symmetry breaking has been used to describe phase transitions in a variety of physical systems. In crystalline solids, the breaking of certain symmetries, such as mirror symmetry, is difficult to detect unambiguously. Using 1TT-TaS2_2, we demonstrate here that rotational-anisotropy second harmonic generation (RA-SHG) is not only a sensitive technique for the detection of broken mirror symmetry, but also that it can differentiate between mirror symmetry-broken structures of opposite planar chirality. We also show that our analysis is applicable to a wide class of different materials with mirror symmetry-breaking transitions. Lastly, we find evidence for bulk mirror symmetry-breaking in the incommensurate charge density wave phase of 1TT-TaS2_2. Our results pave the way for RA-SHG to probe candidate materials where broken mirror symmetry may play a pivotal role

    A solid-state high harmonic generation spectrometer with cryogenic cooling

    Full text link
    Solid-state high harmonic generation spectroscopy (sHHG) is a promising technique for studying electronic structure, symmetry, and dynamics in condensed matter systems. Here, we report on the implementation of an advanced sHHG spectrometer based on a vacuum chamber and closed-cycle helium cryostat. Using an in situ temperature probe, it is demonstrated that the sample interaction region retains cryogenic temperature during the application of high-intensity femtosecond laser pulses that generate high harmonics. The presented implementation opens the door for temperature-dependent sHHG measurements down to few Kelvin, which makes sHHG spectroscopy a new tool for studying phases of matter that emerge at low temperatures, which is particularly interesting for highly correlated materials

    Terahertz-driven irreversible topological phase transition in two-dimensional MoTe2_{2}

    Full text link
    Recent discoveries of broad classes of quantum materials have spurred fundamental study of what quantum phases can be reached and stabilized, and have suggested intriguing practical applications based on control over transitions between quantum phases with different electrical, magnetic, and//or optical properties. Tabletop generation of strong terahertz (THz) light fields has set the stage for dramatic advances in our ability to drive quantum materials into novel states that do not exist as equilibrium phases. However, THz-driven irreversible phase transitions are still unexplored. Large and doping-tunable energy barriers between multiple phases in two-dimensional transition metal dichalcogenides (2D TMDs) provide a testbed for THz polymorph engineering. Here we report experimental demonstration of an irreversible phase transition in 2D MoTe2_{2} from a semiconducting hexagonal phase (2H) to a predicted topological insulator distorted octahedral (1T′1T^{'}) phase induced by field-enhanced terahertz pulses. This is achieved by THz field-induced carrier liberation and multiplication processes that result in a transient high carrier density that favors the 1T′1T^{'} phase. Single-shot time-resolved second harmonic generation (SHG) measurements following THz excitation reveal that the transition out of the 2H phase occurs within 10 ns. This observation opens up new possibilities of THz-based phase patterning and has implications for ultrafast THz control over quantum phases in two-dimensional materials

    The spontaneous symmetry breaking in Ta2_2NiSe5_5 is structural in nature

    Full text link
    The excitonic insulator is an electronically-driven phase of matter that emerges upon the spontaneous formation and Bose condensation of excitons. Detecting this exotic order in candidate materials is a subject of paramount importance, as the size of the excitonic gap in the band structure establishes the potential of this collective state for superfluid energy transport. However, the identification of this phase in real solids is hindered by the coexistence of a structural order parameter with the same symmetry as the excitonic order. Only a few materials are currently believed to host a dominant excitonic phase, Ta2_2NiSe5_5 being the most promising. Here, we test this scenario by using an ultrashort laser pulse to quench the broken-symmetry phase of this transition metal chalcogenide. Tracking the dynamics of the material's electronic and crystal structure after light excitation reveals surprising spectroscopic fingerprints that are only compatible with a primary order parameter of phononic nature. We rationalize our findings through state-of-the-art calculations, confirming that the structural order accounts for most of the electronic gap opening. Not only do our results uncover the long-sought mechanism driving the phase transition of Ta2_2NiSe5_5, but they also conclusively rule out any substantial excitonic character in this instability
    • …
    corecore