31 research outputs found

    Impact of Local Stiffness on Entropy Driven Microscopic Dynamics of Polythiophene

    Get PDF
    © 2020, The Author(s). We exploited the high temporal and spatial resolution of neutron spin echo spectroscopy to investigate the large-scale dynamics of semiflexible conjugated polymer chains in solutions. We used a generalized approach of the well-established Zimm model of flexible polymers to describe the relaxation mode spectra of locally stiff polythiophene chains. The Zimm mode analysis confirms the existence of beads with a finite length that corresponds to a reduced number of segmental modes in semiflexible chains. Irrespective of the temperature and the molecular weight of the conjugated polymer, we witness a universal behavior of the local chain stiffness and invariability of the bead length. Our experimental findings indicate possibly minor role of the change in π-electron conjugation length (and therefore conjugated backbone planar to non-planar conformational transition) in the observed thermochromic behavior of polythiophene but instead point on the major role of chain dynamics in this phenomenon. We also obtained the first experimental evidence of an existence of a single-chain glass state in conjugated polymers

    Investigating the Effect of Medium Chain Triglycerides on the Elasticity of Pulmonary Surfactant

    Get PDF
    In recent years, vaping has increased in both popularity and ease of access. This has led to an outbreak of a relatively new condition known as e-cigarette/vaping-associated lung injury (EVALI). This injury can be caused by physical interactions between the pulmonary surfactant (PS) in the lungs and toxins typically found in vaping solutions, such as medium chain triglycerides (MCT). MCT has been largely used as a carrier agent within many cannabis products commercially available on the market. Pulmonary surfactant ensures proper respiration by maintaining low surface tensions and interface stability throughout each respiratory cycle. Therefore, any impediments to this system that negatively affect the efficacy of this function will have a strong hindrance on the individual’s quality of life. Herein, neutron spin echo (NSE) and Langmuir trough rheology were used to probe the effects of MCT on the mechanical properties of pulmonary surfactant. Alongside a porcine surfactant extract, two lipid-only mimics of progressing complexity were used to study MCT effects in a range of systems that are representative of endogenous surfactant. MCT was shown to have a greater biophysical effect on bilayer systems compared to monolayers, which may align with biological data to propose a mechanism of surfactant inhibition by MCT oil

    Determining the relaxation time from a temperature-dependent scan of the neutron spin-echo signal amplitude

    No full text
    Temperature-dependent scans of the neutron scattering intensity are commonly employed in high energy-resolution quasielastic measurements. Besides serving as a useful diagnostic tool for identifying the temperature range that could give rise to a measurable relaxation signal, such scans of the “elastic” (resolution-defined) intensity could be employed for determining the temperature at which the relaxation time in the system becomes equal to the resolution-defined characteristic time of the spectrometer measurement. This is a model-independent alternative to the “traditional” approach, when, at a given measurement temperature, the relaxation time in the system is obtained from fitting the full dynamic spectra with a model scattering function. Here we introduce the temperature-dependent scan of the neutron spin-echo signal amplitude. Using a well-characterized system with a complex relaxation pattern, we demonstrate that the relaxation time obtained from the approach proposed herein maps well on the previous “traditionally” measured relaxation times. Thus, despite monitoring a different variable (neutron spin-echo signal amplitude vs. neutron scattering intensity), the benefits of the model-free temperature-dependent scan approach, traditionally utilized in neutron time-of-flight and backscattering experiments, can be extended to measurements of the very slow relaxations assessable only by high-resolution neutron spin-echo

    Interaction of a Short Antimicrobial Peptide on Charged Lipid Bilayer: A Case Study on Aurein 1.2 Peptide

    No full text
    Aurein 1.2 is a short but potent α-helical membrane-active antimicrobial peptide that has shown inhibition on a broad spectrum of bacteria and anti-cancer cell activity. With well-defined helicity, amphipathicity, and cationic charges, it readily binds to membranes and causes membrane change and disruption. This study provides details on how Aurein 1.2 interacts with charged lipid membranes by using neutron membrane diffraction (NMD) and neutron spin echo (NSE) spectroscopy on complex peptide-membrane systems. NMD provides higher resolution lipid bilayer structures than solution scattering. NMD revealed the peptide is mostly associated in the lipid headgroup region. Even at moderately high concentrations (e.g., peptide:lipid ratio of 1:30), aurein is located at the acyl chain-headgroup region without deep penetration into the hydrophobic acyl chain. However, it does reduce the elasticity of the membrane at that concentration, which was corroborated by the NSE results. Furthermore, NSE shows that aurein first softens the membrane, like other α-helical peptides at low concentration, but then makes the membrane much more rigid, even without membrane pore formation. The evidence shows that the action of aurein is quite strong for modifying charged lipid distribution without the need to form membrane pores or disintegrate membranes

    Phospholipid membrane dynamics at the solid–liquid interface studied with grazing incidence neutron spin echo spectroscopy

    No full text
    Neutron spin echo spectroscopy has been used under grazing incidence conditions to study the dynamics of SoyPC phospholipid membranes at the solid-liquid interface. The use of advanced neutron optical components such as a neutron prism and a resonator structure at the interface for an increase in intensity near the interface helped to study partially elastic waves in the phospholipid membrane as well as the influence of Ibuprofen on the membrane elasticity. Previously observed phase transitions of the surface layers of SoyPC from a lamellar structure to surface crystalline phases also showed their imprint in a suppresion of the phospholipid membrane dynamics
    corecore