268 research outputs found

    Impact of residual stress on thermal damage accumulation, and Young's modulus of fiber-reinforced ultra-high temperature ceramics

    Get PDF
    Ultra-high temperature ceramic matrix composites (UHTCMCs) based on ZrB2-matrix reinforced with 45 vol% of unidirectional continuous carbon fibers are studied through the thermal mechanical hysteresis in order to investigate the thermal damage accumulation. The analysis carried out allowed to extrapolate the Young's modulus of the matrix from thermal expansion measures. It was found that the initial matrix Young's modulus of 195 GPa steadily decreases by thermal cycling the samples between RT and 1300 °C as a consequence of matrix cracking. On the other hand, the analysis suggested that carbon fibers keep their Young's modulus constant at 780 GPa. Finally, the residual stresses due to the different coefficient of thermal expansion between matrix and carbon fibers are discussed and let to justify the Young's modulus of 230 GPa, which cannot be explained with the so-called "rule of mixtures" generally valid and widely used in the composite science. Keywords: Boride, Ceramic matrix composite (CMC), Pitch-derived carbon fiber, Thermal expansion coefficient, Thermomechanical hysteresis loops, Linear elasticit

    Synthesis and characterization of group IV and V metal diboride nanocrystals via borothermal reduction of metal oxide with NaBH4

    Get PDF
    Group IV and V metal diborides (MB2) have a unique combination of properties such as a very high melting point (\u3e3000°C), high hardness, good solid-state phase stability, high thermal and electrical conductivity. Metal diboride-based ceramics are expected to be potential candidate materials for ultra-high-temperature applications in the aerospace industry [1]. Due to the poor sinterability of commercial powders, the availability of nanometric boride particles has indeed the potential to improve several stages of ceramic processing [2], or for instance to facilitate the sintering of bulk ceramics due to enhanced particle reactivity [3]. Several synthesis have been developed to achieve nanoborides: chemical route from inorganic precursors, mechanical alloying and self-propagating high-temperature synthesis [4–6]. In this work we proposed the synthesis of group IV and V metal diboride (MB2, M= Ti, Zr, Hf, Nb, Ta) nanocrystals by a thermal treatment of the metal oxide and sodium borohydride (NaBH4) at 700°C under atmospheric pressure [7]. The reaction occurs first via decomposition of NaBH4, followed by the formation of amorphous boron and crystalline ternary species with general formula NaxMyOz and NaxByOz. Finally all of the intermediary species yield metal diboride (MB2) and sodium meta-borate (NaBO2). Synthesized TiB2 nanocrystals have an average size of 11 nm and the powder has a specific surface area (s.s.a) of 33.45 m2/g. ZrB2 grains have a platelet morphology with an aspect ratio of 10, average size of 22.5 nm and s.s.a of 24.97 m2/g; HfB2 has a similar morphology with a crystals size of 28 nm, while the s.s.a is even higher, 36.36 m2/g. As far as we know, the latter is the finest powder obtained via borothermal reduction of metal oxides ever reported. Synthesized NbB2 powder consists of crystallites around 12 nm and has a s.s.a of 21.09 m2/g. TaB2 powder has a s.s.a of 11.38 m2/g and consists of 200 nm agglomerates of spherical and needle-shaped nanocrystals with average size of 11 nm

    Introduction to H2020 project C3HARME: Next generation ceramic composites for combustion harsh environments and space

    Get PDF
    Materials for aeronautical and space applications largely involve ceramic matrix composites, CMCs, made of carbon or silicon carbide. However, C/C composites suffer from poor erosion resistance while silicon-based ceramics, SiC/SiC or C/SiC composites, may undergo strong ablation due to the formation and volatilization of silica. In recent years, Ultra-High Temperature Ceramics, UHTCs, have shown outstanding erosion resistance at temperatures up to 2000°C or even higher but they still cannot resist to thermal shocks and damage. Therefore, there is an increasing demand for advanced materials with temperature capability in highly corrosive environments to enable space vehicles to resist several launches and re-entries. The EU-funded project C3HARME aims at combining the best features of CMCs and UHTCs to design, develop, manufacture and test a new class of Ultra-High Temperature Ceramic Matrix Composite (UHTCMCs) with self-healing capabilities. Applications selected to implement the new materials are near-zero erosion nozzles and near- zero ablation TPS tiles. This talk aims at giving an introduction to a dedicated session that illustrates the most important challenges addressed by C3HARME project; including the integration between well-established and novel techniques for CMCs and UHTCs production, the need for very high temperature characterization, the meaning of self-healing capability for UHTCMCs, the contribution of modeling to materials development and to investigation of the relationships between microstructure and thermo-mechanical properties. Acknowledgements: This work has received funding from the European Union’s Horizon 2020 “Research and innovation programme” under grant agreement N°685594 (C3HARME

    On the thermal shock resistance and mechanical properties of novel unidirectional UHTCMCs for extreme environments

    Get PDF
    Aerospace provides a strong driving force for technological development. Recently a novel class of composites for harsh environments, based on ultra-high temperature ceramic composites reinforced with continuous fibers (UHTCMC), is being developed. The goal of this work is to overcome the current data patchwork about their microstructural optimization and structural behavior, by showing a consistent mechanical characterization of well-defined and developed UHTCMCs based on ZrB2-matrix. The obtained composites have a density of 3.7 g/cm3 and porosity of less than 10%. The flexural strength increased from 360 to 550 MPa from room temperature to 1500 °C, showing a non-brittle behaviour. The composites were able to sustain a thermal shock severity as high as 1500 °C. The maximum decrease of strength at 1400 °C was 16% of the initial value, indicating that the samples could be shocked at even higher temperature. Flexural strength, Young’s modulus and coefficient of thermal expansions (CTE) of the composites were measured both along transverse and longitudinal direction and correlated to the microstructural features. The presented microstructural and mechanical characterization well defines the potentiality of the UHTCMCs and can be used as reference for the design and development of novel thermal protection systems and other structural components for harsh environments

    Introduction to H2020 project C3HARME – next generation ceramic composites for combustion harsh environment and space

    Get PDF
    There is an increasing demand for advanced materials with enhanced temperature capability in highly corrosive environments, for instance enable space vehicles to resist several launches and re-entries. The EU-funded project C3HARME aims at combining the best features of CMCs and UHTCs to design, develop, manufacture and qualify a new class of Ultra-High Temperature Ceramic Matrix Composite (UHTCMCs) with self-healing capabilities. Applications selected to implement the new materials are near-zero erosion nozzles and near-zero ablation thermal protection systems. This paper aims at giving an introduction to the challenges addressed by C3HARME project including (i) the integration between well-established and novel techniques for CMCs and UHTCs production, (ii) the need for very high temperature characterisation, (iii) the meaning of self-healing capability for UHTCMCs, (iv) the contribution of modelling to materials development and (V) the investigation of the microstructure/ thermo-mechanical property correlations

    Prognostic significance of diabetes and stress hyperglycemia in acute stroke patients

    Get PDF
    Background Hyperglycemic non-diabetic stroke patients have a worse prognosis than both normoglycemic and diabetic patients. Aim of this study was to assess whether hyperglycemia is an aggravating factor or just an epiphenomenon of most severe strokes. Methods In this retrospective study, 1219 ischemic or hemorrhagic stroke patients (73.7 +/- 13.1 years) were divided into 4 groups: 0 = non-hyperglycemic non-diabetic, 1 = hyperglycemic non-diabetic, 2 = non-hyperglycemic diabetic and 3 = hyperglycemic diabetic. Hyperglycemia was defined as fasting blood glucose >= 126 mg/dl (>= 7 mmol/l) measured the morning after admission, while the diagnosis of diabetes was based on a history of diabetes mellitus or on a glycated hemoglobin >= 6.5% (>= 48 mmol/mol), independently of blood glucose levels. All diabetic patients, except 3, had Type 2 diabetes. The 4 groups were compared according to clinical history, stroke severity indicators, acute phase markers and main short term stroke outcomes (modified Rankin scale >= 3, death, cerebral edema, hemorrhagic transformation of ischemic lesions, fever, oxygen administration, pneumonia, sepsis, urinary infection and heart failure). Results Group 1 patients had more severe strokes, with larger cerebral lesions and higher inflammatory markers, compared to the other groups. They also had a high prevalence of atrial fibrillation, prediabetes, previous stroke and previous arterial revascularizations. In this group, the highest frequencies of cerebral edema, hemorrhagic transformation, pneumonia and oxygen administration were obtained. The prevalence of dependency at discharge and in-hospital mortality were equally high in Group 1 and Group 3. However, in multivariate analyses including stroke severity, cerebral lesion diameter, leukocytes and C-reactive protein, Group 1 was only independently associated with hemorrhagic transformation (OR 2.01, 95% CI 0.99-4.07), while Group 3 was independently associated with mortality (OR 2.19, 95% CI 1.32-3.64) and disability (OR 1.70, 95% CI 1.01-2.88). Conclusions Hyperglycemic non-diabetic stroke patients had a worse prognosis than non-hyperglycemic or diabetic patients, but this group was not independently associated with mortality or disability when size, severity and inflammatory component of the stroke were accounted for

    Epigenomic and somatic mutations of pituitary tumors with clinical and pathological correlations in 111 patients

    Get PDF
    Objective To profile clinically non-aggressive and aggressive pituitary adenomas (PAs)/pituitary neuroendocrine tumours (PitNETs) and pituitary carcinomas for somatic mutations and epigenetic alterations of genes involved in cell proliferation/differentiation, microRNAs (miRNA)/long noncoding RNA (LncRNA)-post-transcriptional regulators and therapy targets. Design Retrospective observational study. Patients and Measurements A total of 64 non-aggressive and 41 aggressive PAs/PitNETs and 6 pituitary carcinomas treated by endoscopic surgery with >= 1-year follow-up were included. Somatic mutations of 17 genes and DNA methylation of 22 genes were assessed. Ten normal pituitaries were used as control. Results We found at least one mutation in 17 tumours, including 6/64 non-aggressive, 10/41 aggressive PAs/PitNETs, and 1/6 pituitary carcinoma. AIP (N = 6) was the most frequently mutated gene, followed by NOTCH (4), and TP53 (3). Hypermethylation of PARP15, LINC00599, ZAP70 was more common in aggressive than non-aggressive PAs/PITNETs (p < .05). Lower levels of methylation of AIP, GNAS and PDCD1 were detected in aggressive PAs/PITNETs than non-aggressive ones (p < .05). For X-linked genes, males presented higher level of methylation of FLNA, UXT and MAGE family (MAGEA11, MAGEA1, MAGEC2) genes in aggressive vs. non-aggressive PAs/PITNETs (p < .05). In pituitary carcinomas, methylation of autosomal genes PARP15, LINC00599, MIR193 and ZAP70 was higher than in PAs/PITNETs, while X-linked genes methylation level was lower. Conclusions Somatic mutations and methylation levels of genes involved in cell proliferation/differentiation, miRNA/LncRNA-post-transcriptional regulators and targets of antineoplastic therapies are different in non-aggressive and in aggressive PAs/PitNETs. Methylation profile also varies according to gender. Combined genetic-epigenetic analysis, in association with clinico-radiological-pathological data, may be of help in predicting PA/PitNET behaviour
    corecore