53 research outputs found

    Perspectives in Myrtaceae evolution from plastomes and nuclear phylogenies

    Get PDF
    Myrtaceae is a large and species-rich family of woody eudicots, with prevalent distribution in the Southern Hemisphere. Classification and taxonomy of species belonging to this family is quite challenging, sometimes with difficulty in species identification and producing phylogenies with low support for species relationships. Most of the current knowledge comes from few molecular markers, such as plastid genes and intergenic regions, which can be difficult to handle and produce conflicting results. Based on plastid protein-coding sequences and nuclear markers, we present a topology for the phylogenetic relationships among Myrtaceae tribes. Our phylogenetic estimate offers a contrasting topology over previous analysis with fewer markers. Plastome phylogeny groups the tribes Syzygieae and Eucalypteae and individual chloroplast genes produce divergent topologies, especially among species within Myrteae tribe, but also in regard to the grouping of Syzygieae and Eucalypteae. Results are consistent and reproducible with both nuclear and organellar datasets. It confronts previous data about the deep nodes of Myrtaceae phylogeny

    The Role of Co-Deleted Genes in Neurofibromatosis Type 1 Microdeletions: an Evolutive Approach

    Get PDF
    Neurofibromatosis type 1 (NF1) is a cancer predisposition syndrome that results from dominant loss-of-function mutations mainly in the NF1 gene. Large rearrangements are present in 5–10% of affected patients, generally encompass NF1 neighboring genes, and are correlated with a more severe NF1 phenotype. Evident genotype–phenotype correlations and the importance of the co-deleted genes are difficult to establish. In our study we employed an evolutionary approach to provide further insights into the understanding of the fundamental function of genes that are co-deleted in subjects with NF1 microdeletions. Our goal was to access the ortholog and paralog relationship of these genes in primates and verify if purifying or positive selection are acting on these genes. Fourteen genes were analyzed in twelve mammalian species. Of these, four and ten genes showed positive selection and purifying selection, respectively. The protein, RNF135, showed three sites under positive selection at the RING finger domain, which may have been selected to increase efficiency in ubiquitination routes in primates. The phylogenetic analysis suggests distinct evolutionary constraint between the analyzed genes. With these analyses, we hope to help clarify the correlation of the co-deletion of these genes and the more severe phenotype of NF1

    Going forward and back : the complex evolutionary history of the GPx

    Get PDF
    There is large diversity among glutathione peroxidase (GPx) enzymes regarding their function, structure, presence of the highly reactive selenocysteine (SeCys) residue, substrate usage, and reducing agent preference. Moreover, most vertebrate GPxs are very distinct from non-animal GPxs, and it is still unclear if they came from a common GPx ancestor. In this study, we aimed to unveil how GPx evolved throughout different phyla. Based on our phylogenetic trees and sequence analyses, we propose that all GPx encoding genes share a monomeric common ancestor and that the SeCys amino acid was incorporated early in the evolution of the metazoan kingdom. In addition, classical GPx and the cysteine-exclusive GPx07 have been present since non-bilaterian animals, but they seem to have been lost throughout evolution in different phyla. Therefore, the birth-and-death of GPx family members (like in other oxidoreductase families) seems to be an ongoing process, occurring independently across different kingdoms and phyla

    Biosynthesis of triacylglycerols (tags) in plants and algae

    Get PDF
    Triacylglycerols (TAGs), which consist of three fatty acids bound to a glycerol backbone, are major storage lipids that accumulate in developing seeds, flower petals, pollen grains, and fruits of innumerous plant species. These storage lipids are of great nutritional and nutraceutical value and, thus, are a common source of edible oils for human consumption and industrial purposes. Two metabolic pathways for the production of TAGs have been clarified: an acyl CoA-dependent pathway and an acyl-CoA-independent pathway. Lipid metabolism, specially the pathways to fatty acids and TAG biosynthesis, is relatively well understood in plants, but poorly known in algae. It is generally accepted that the basic pathways of fatty acid and TAG biosynthesis in algae are analogous to those of higher plants. However, unlike higher plants where individual classes of lipids may be synthesized and localized in a specific cell, tissue or organ, the complete pathway, from carbon dioxide fixation to TAG synthesis and sequestration, takes place within a single algal cell. Another distinguishing feature of some algae is the large amounts of very long-chain polyunsaturated fatty acids (VLC-PUFAs) as major fatty acid components. Nowadays, the focus of attention in biotechnology is the isolation of novel fatty acid metabolizing genes, especially elongases and desaturases that are responsible for PUFAs synthesis, from different species of algae, and its transfer to plants. The aim is to boost the seed oil content and to generate desirable fatty acids in oilseed crops through genetic engineering approaches. This paper presents the current knowledge of the neutral storage lipids in plants and algae from fatty acid biosynthesis to TAG accumulation

    Large-scale phylogeography of the disjunct Neotropical tree species Schizolobium parahyba (Fabaceae-Caesalpinioideae).

    Get PDF
    Neotropical rainforests exhibit high levels of endemism and diversity. Although the evolutionary genetics of plant diversification has garnered increased interest, phylogeographic studies of widely distributed species remain scarce. Here we describe chloroplast and nuclear variation patterns in Schizolobium parahyba (Fabaceae), a widespread tree in Neotropical rainforests that harbor two varieties with a disjunct distribution. Chloroplast and nuclear sequence analyses yielded 21 and 4 haplotypes, respectively. Two genetic diversity centers that correlate with the two known varieties were identified: the Southeastern Atlantic forest and the Amazonian basin. In contrast, the populations from southern and northeastern Atlantic forests and Andean-Central American forests exhibited low levels of genetic diversity and divergent haplotypes, likely related to historical processes that impact the flora and fauna in these regions, such as a founder's effect after dispersion and demographic expansion. Phylogeographic and demographic patterns suggest that episodes of genetic isolation and dispersal events have shaped the evolutionary history for this species, and different patterns have guided the evolution of S. parahyba. Moreover, the results of this study suggest that the dry corridor formed by Cerrado and Caatinga ecoregions and the Andean uplift acted as barriers to this species' gene flow, a picture that may be generalized to most of the plant biodiversity tropical woodlands and forests. These results also reinforce the importance of evaluating multiple genetic markers for a more comprehensive understanding of population structure and history. Our results provide insight into the conservation efforts and ongoing work on the genetics of population divergence and speciation in these Neotropical rainforests. (C) 2012 Elsevier Inc. All rights reserved

    Molecular evolution and diversification of the GRF transcription factor family

    Get PDF
    Growth Regulating Factors (GRFs) comprise a transcription factor family with important functions in plant growth and development. They are characterized by the presence of QLQ and WRC domains, responsible for interaction with proteins and DNA, respectively. The QLQ domain is named due to the similarity to a protein interaction domain found in the SWI2/SNF2 chromatin remodeling complex. Despite the occurrence of the QLQ domain in both families, the divergence between them had not been further explored. Here, we show evidence for GRF origin and determined its diversification in angiosperm species. Phylogenetic analysis revealed 11 well-supported groups of GRFs in flowering plants. These groups were supported by gene structure, synteny, and protein domain composition. Synteny and phylogenetic analyses allowed us to propose different sets of probable orthologs in the groups. Besides, our results, together with functional data previously published, allowed us to suggest candidate genes for engineering agronomic traits. In addition, we propose that the QLQ domain of GRF genes evolved from the eukaryotic SNF2 QLQ domain, most likely by a duplication event in the common ancestor of the Charophytes and land plants. Altogether, our results are important for advancing the origin and evolution of the GRF family in Streptophyta

    Filogeografia e sistemática molecular de Schizolobium parahyba (Vell.) Blake (Guapuruvu) através do sequenciamento de regiões cloroplásticas e nucleares

    No full text
    A Floresta Atlântica e a Floresta Amazônica estão entre as maiores e mais diversas florestas tropicais do mundo, com muitas de suas espécies apresentando distribuição disjunta. O estudo genético molecular dessas espécies é interessante, pois podem fornecer informações sobre o relacionamento histórico entre essas diferentes regiões geográficas. Entretanto, ainda poucos são os estudos sobre a distribuição da estrutura genética nestas áreas, principalmente para espécies vegetais. O estudo da diversidade genética em espécies arbóreas é de grande importância para a manutenção das fontes de germoplasma a serem usados em práticas de reflorestamento e para espécies com uma ampla distribuição geográfica que ocupam diferentes habitats que são componentes chaves na composição de diversos ecossistemas. O gênero Schizolobium (Caesapinioideae) apresenta ampla distribuição nos Neotrópicos e devido ao seu rápido crescimento é amplamente utilizado em programas de reflorestamento, além de apresentar importância econômica pela utilização da madeira. O presente estudo apresenta a primeira análise genética molecular do gênero Schizolobium, incluindo uma ampla amostragem de populações ao longo de sua distribuição geográfica. Um conjunto de 11 marcadores moleculares (cpDNA e ITS) foram usados para investigar a evolução, posição sistemática, estimar o tempo de divergência entre as duas variedades, verificar um possível evento de especiação, estudar os padrões biogeográficos entre as florestas Atlântica e Amazônica, além de investigar a estrutura filogeográfica em Schizolobium. Marcadores não-neutros também foram estudados na tentativa de serem usados para investigar a variação adaptativa relacionada ao estresse hídrico. Sequências parciais dos genes P5CS de quatro espécies arbóreas (Schizolobium parahyba, Ceiba pentandra, Bombacopsis quinata e Cedrela Odorata) foram clonadas, seqüenciadas e comparadas com sequências de outras espécies. A análise filogenética indicou que eventos de duplicação ocorreram várias vezes e em diferentes frequências ao longo da evolução das monocotiledôneas e dicotiledôneas. Apesar de ter sido detectada seleção positiva em diferentes regiões do genes P5CS, uma pequena quantidade de polimorfismo foi encontrado entre indivíduos de Schizolobium e não foram correlacionados com estresse hídrico. A monofilia do gênero Schizolobium foi bem suportada pelas análises de maxima parsimônia e Baysiana das regiões de cpDNA e de DNA nuclear. A idade do clado Schizolobium foi estimado em aproximadamente 15,6 milhões de anos (Mya) e as duas variedades divergiram a aproximadamente 3,1 Mya. Um elevado nível de divergência genética foi observado entre as populações de Schizolobium e os resultados indicam uma forte estruturação filogeográfica e um reduzido fluxo gênico entre elas. Além disso, nenhum haplótipo nuclear e de cpDNA foi compartilhado entre as duas variedades, evidenciando um isolamento entre elas. Foi observada similaridade nas sequências de cpDNA entre indivíduos de algumas populações da var. parahyba na Mata Atlântica (RJ3, ES, BA1, BA2 e BA3) com indivíduos das populações da var. amzonicum, indicando a possibilidade da existência de retenção de polimorfismo ancestral com pouco tempo para o acúmulo de divergência nestas regiões. Todos os dados moleculares produzidos sugerem a separação das duas variedades dentro do gênero Schizolobium, e que a sua atual divisão taxonômica necessita de revisão. Esses dados também fornecem importantes informações genéticas que podem ser aplicadas no campo da conservação e florestamento exploratório.The Atlantic and the Amazon rain forests encompass the most diverse tropical forests in the world, with many species showing disjunct distribution. The molecular studies of widespread and disjunct species present particular interest, as they can provide information on the historical relationship between different geographical regions. However, there are few records about genetic structure in these areas mainly in plants species. Studies of genetic diversity of the tree species are very important to provide best practice policies for sourcing germplasm for reforestation within a range of degraded landscapes and for trees with a range of lifestyles that are key components of a diverse ecosystem composition. Schizolobium (Caesalpinioideae) is a widespread genus found in Neotropical forest, with a fast growing rate that make it extensively used in economically important reforestation programs that employ native trees. This study presents the first extensive molecular analysis within the genus Schizolobium, including a widespread sampling of populations from throughout their geographic distribution. A set of 11 molecular markers (cpDNA and nuclear) were used to address the evolution, systematic position, estimate the age of divergence between the two varieties, to study the biogeographic patterns between Atlantic and Amazonian rain forests and to investigate the phylogeographic structure of Schizolobium. Furthermore, non neutral markers were studied to attempt of access the adaptive variation in neotropical tree species. Partial sequences of P5CS genes from four Neotropical trees (Schizolobium parahyba, Ceiba pentandra, Bombacopsis quinata e Cedrela Odorata) were cloned and compared to those of other plant taxa. The molecular phylogenetic analysis indicated that P5CS duplication events have occurred several times following the emergence of flowering plants and at different frequencies throughout the evolution of monocots and dicots. Besides, positive selection was observed at different regions of P5CS paralogous genes, but a low polymorphism was found among individual of different areas and did not associate with water stress. The monophyletic nature of Schizolobium was well supported by both the Maximum Parsimony and Bayesian analyses of the cpDNA and nuclear regions. The Schizolobium crown node was estimated to have arisen 15.6 million years ago (Mya) and the two varieties has been diverged approximately 3.1 Mya. High levels of genetic divergence were found among the populations of Schizolobium and the results indicate a strong phylogeographic structure and a reduced gene flow between them. Besides, the cpDNA and nuclear haplotypes is not sharing between the two varieties, indicated a genetic isolation between them. The cpDNA sequence similarity of some populations from Atlantic forest (RJ3, ES, BA1, BA2 e BA3) with the var. amazonicum was observed and this may be due retention of ancestral polymorphisms with insufficient time for the accumulation of differences in these regions. The molecular data suggest the separation of the two varieties of genus Schizolobium, and current taxonomic status needs revision. These data also provides important genetic information for conservation
    corecore