57 research outputs found

    MicroRNA-184 is a downstream effector of albuminuria driving renal fibrosis in rats with diabetic nephropathy

    Get PDF
    Renal fibrosis is a common complication of diabetic nephropathy and is a major cause of end-stage renal disease. Despite the suggested link between renal fibrosis and microRNA (miRNA) dysregulation in diabetic nephropathy, the identification of the specific miRNAs involved is still incomplete. The aim of this study was to investigate miRNA profiles in the diabetic kidney and to identify potential downstream targets implicated in renal fibrosis. miRNA expression profiling was investigated in the kidneys of 8-month-old Zucker diabetic fatty (ZDF) rats during overt nephropathy. Localisation of the most upregulated miRNA was established by in situ hybridisation. The candidate miRNA target was identified by in silico analysis and its expression documented in the diabetic kidney associated with fibrotic markers. Cultured tubule cells served to assess which of the profibrogenic stimuli acted as a trigger for the overexpressed miRNA, and to investigate underlying epigenetic mechanisms. In ZDF rats, miR-184 showed the strongest differential upregulation compared with lean rats (18-fold). Tubular localisation of miR-184 was associated with reduced expression of lipid phosphate phosphatase 3 (LPP3) and collagen accumulation. Transfection of NRK-52E cells with miR-184 mimic reduced LPP3, promoting a profibrotic phenotype. Albumin was a major trigger of miR-184 expression. Anti-miR-184 counteracted albumin-induced LPP3 downregulation and overexpression of plasminogen activator inhibitor-1. In ZDF rats, ACE-inhibitor treatment limited albuminuria and reduced miR-184, with tubular LPP3 preservation and tubulointerstitial fibrosis amelioration. Albumin-induced miR-184 expression in tubule cells was epigenetically regulated through DNA demethylation and histone lysine acetylation and was accompanied by binding of NF-kappa B p65 subunit to miR-184 promoter. These results suggest that miR-184 may act as a downstream effector of albuminuria through LPP3 to promote tubulointerstitial fibrosis, and offer the rationale to investigate whether targeting miR-184 in association with albuminuria-lowering drugs may be a new strategy to achieve fully anti-fibrotic effects in diabetic nephropathy

    Evaluation of the zucker diabetic fatty (ZDF) rat as a model for human disease based on urinary peptidomic profiles

    Get PDF
    Representative animal models for diabetes-associated vascular complications are extremely relevant in assessing potential therapeutic drugs. While several rodent models for type 2 diabetes (T2D) are available, their relevance in recapitulating renal and cardiovascular features of diabetes in man is not entirely clear. Here we evaluate at the molecular level the similarity between Zucker diabetic fatty (ZDF) rats, as a model of T2D-associated vascular complications, and human disease by urinary proteome analysis. Urine analysis of ZDF rats at early and late stages of disease compared to age- matched LEAN rats identified 180 peptides as potentially associated with diabetes complications. Overlaps with human chronic kidney disease (CKD) and cardiovascular disease (CVD) biomarkers were observed, corresponding to proteins marking kidney damage (eg albumin, alpha-1 antitrypsin) or related to disease development (collagen). Concordance in regulation of these peptides in rats versus humans was more pronounced in the CVD compared to the CKD panels. In addition, disease-associated predicted protease activities in ZDF rats showed higher similarities to the predicted activities in human CVD. Based on urinary peptidomic analysis, the ZDF rat model displays similarity to human CVD but might not be the most appropriate model to display human CKD on a molecular level

    Add-On Cyclic Angiotensin-(1-7) with Cyclophosphamide Arrests Progressive Kidney Disease in Rats with ANCA Associated Glomerulonephritis

    No full text
    Rapidly progressive crescentic glomerulonephritis associated with anti-neutrophil cytoplasmic antibodies (ANCA-GN) is a major cause of renal failure. Current immunosuppressive therapies are associated with severe side effects, intensifying the need for new therapeutic strategies. The activation of Mas receptor/Angiotensin-(1-7) axis exerted renoprotection in chronic kidney disease. Here, we investigated the effect of adding the lanthionine-stabilized cyclic form of angiotensin-1-7 [cAng-(1-7)] to cyclophosphamide in a rat model of ANCA-GN. At the onset of proteinuria, Wistar Kyoto rats with ANCA-GN received vehicle or a single bolus of cyclophosphamide, with or without daily cAng-(1-7). Treatment with cAng-(1-7) plus cyclophosphamide reduced proteinuria by 85% vs. vehicle, and by 60% vs. cyclophosphamide, and dramatically limited glomerular crescents to less than 10%. The addition of cAng-(1-7) to cyclophosphamide protected against glomerular inflammation and endothelial rarefaction and restored the normal distribution of parietal epithelial cells. Ultrastructural analysis revealed a preserved GBM, glomerular endothelium and podocyte structure, demonstrating that combination therapy provided an additional layer of renoprotection. This study demonstrates that adding cAng-(1-7) to a partially effective dose of cyclophosphamide arrests the progression of renal disease in rats with ANCA-GN, suggesting that cAng-(1-7) could be a novel clinical approach for sparing immunosuppressants

    Sirtuin 3 Deficiency Aggravates Kidney Disease in Response to High-Fat Diet through Lipotoxicity-Induced Mitochondrial Damage

    No full text
    Sirtuin 3 (SIRT3) is the primary mitochondrial deacetylase that controls the antioxidant pathway and energy metabolism. We previously found that renal Sirt3 expression and activity were reduced in mice with type 2 diabetic nephropathy associated with oxidative stress and mitochondrial abnormalities and that a specific SIRT3 activator improved renal damage. SIRT3 is modulated by diet, and to assess whether Sirt3 deficiency aggravates mitochondrial damage and accelerates kidney disease in response to nutrient overloads, wild-type (WT) and Sirt3−/− mice were fed a high-fat-diet (HFD) or standard diet for 8 months. Sirt3−/− mice on HFD exhibited earlier and more severe albuminuria compared to WT mice, accompanied by podocyte dysfunction and glomerular capillary rarefaction. Mesangial matrix expansion, tubular vacuolization and inflammation, associated with enhanced lipid accumulation, were more evident in Sirt3−/− mice. After HFD, kidneys from Sirt3−/− mice showed more oxidative stress than WT mice, mitochondria ultrastructural damage in tubular cells, and a reduction in mitochondrial mass and energy production. Our data demonstrate that Sirt3 deficiency renders mice more prone to developing oxidative stress and mitochondrial abnormalities in response to HFD, resulting in more severe kidney diseases, and this suggests that mitochondria protection may be a method to prevent HFD-induced renal injury

    Low Nephron Number Induced by Maternal Protein Restriction Is Prevented by Nicotinamide Riboside Supplementation Depending on Sirtuin 3 Activation

    No full text
    A reduced nephron number at birth, due to critical gestational conditions, including maternal malnutrition, is associated with the risk of developing hypertension and chronic kidney disease in adulthood. No interventions are currently available to augment nephron number. We have recently shown that sirtuin 3 (SIRT3) has an important role in dictating proper nephron endowment. The present study explored whether SIRT3 stimulation, by means of supplementation with nicotinamide riboside (NR), a precursor of the SIRT3 co-substrate nicotinamide adenine dinucleotide (NAD+), was able to improve nephron number in a murine model of a low protein (LP) diet. Our findings show that reduced nephron number in newborn mice (day 1) born to mothers fed a LP diet was associated with impaired renal SIRT3 expression, which was restored through supplementation with NR. Glomerular podocyte density, as well as the rarefaction of renal capillaries, also improved through NR administration. In mechanistic terms, the restoration of SIRT3 expression through NR was mediated by the induction of proliferator-activated receptor γ (PPARγ) coactivator-1α (PGC-1α). Moreover, NR restored SIRT3 activity, as shown by the reduction of the acetylation of optic atrophy 1 (OPA1) and superoxide dismutase 2 (SOD2), which resulted in improved mitochondrial morphology and protection against oxidative damage in mice born to mothers fed the LP diet. Our results provide evidence that it is feasible to prevent nephron mass shortage at birth through SIRT3 boosting during nephrogenesis, thus providing a therapeutic option to possibly limit the long-term sequelae of reduced nephron number in adulthood

    Endothelial Glycocalyx of Peritubular Capillaries in Experimental Diabetic Nephropathy: A Target of ACE Inhibitor-Induced Kidney Microvascular Protection

    No full text
    Peritubular capillary rarefaction is a recurrent aspect of progressive nephropathies. We previously found that peritubular capillary density was reduced in BTBR ob/ob mice with type 2 diabetic nephropathy. In this model, we searched for abnormalities in the ultrastructure of peritubular capillaries, with a specific focus on the endothelial glycocalyx, and evaluated the impact of treatment with an angiotensin-converting enzyme inhibitor (ACEi). Mice were intracardially perfused with lanthanum to visualise the glycocalyx. Transmission electron microscopy analysis revealed endothelial cell abnormalities and basement membrane thickening in the peritubular capillaries of BTBR ob/ob mice compared to wild-type mice. Remodelling and focal loss of glycocalyx was observed in lanthanum-stained diabetic kidneys, associated with a reduction in glycocalyx components, including sialic acids, as detected through specific lectins. ACEi treatment preserved the endothelial glycocalyx and attenuated the ultrastructural abnormalities of peritubular capillaries. In diabetic mice, peritubular capillary damage was associated with an enhanced tubular expression of heparanase, which degrades heparan sulfate residues of the glycocalyx. Heparanase was also detected in renal interstitial macrophages that expressed tumor necrosis factor-α. All these abnormalities were mitigated by ACEi. Our findings suggest that, in experimental diabetic nephropathy, preserving the endothelial glycocalyx is important in order to protect peritubular capillaries from damage and loss

    Renal Expression of FGF23 in Progressive Renal Disease of Diabetes and the Effect of Ace Inhibitor

    No full text
    <div><p>Fibroblast growth factor 23 (FGF23) is a phosphaturic hormone mainly produced by bone that acts in the kidney through FGF receptors and Klotho. Here we investigated whether the kidney was an additional source of FGF23 during renal disease using a model of type 2 diabetic nephropathy. Renal expression of FGF23 and Klotho was assessed in Zucker diabetic fatty (ZDF) and control lean rats at 2, 4, 6, 8 months of age. To evaluate whether the renoprotective effect of angiotensin converting enzyme (ACE) inhibitor in this model was associated with changes in FGF23 and Klotho, ZDF rats received ramipril from 4, when proteinuric, to 8 months of age. FGF23 mRNA was not detectable in the kidney of lean rats, nor of ZDF rats at 2 months of age. FGF23 became measurable in the kidney of diabetic rats at 4 months and significantly increased thereafter. FGF23 protein localized in proximal and distal tubules. Renal Klotho mRNA and protein decreased during time in ZDF rats. As renal disease progressed, serum phosphate levels increased in parallel with decline of fractional phosphorus excretion. Ramipril limited proteinuria and renal injury, attenuated renal FGF23 upregulation and ameliorated Klotho expression. Ramipril normalized serum phosphate levels and tended to increase fractional phosphorus excretion. These data indicate that during progressive renal disease the kidney is a site of FGF23 production which is limited by ACE inhibition. Interfering pharmacologically with the delicate balance of FGF23 and phosphorus in diabetes may have implications in clinics.</p></div

    Shiga Toxin 2 Triggers C3a-Dependent Glomerular and Tubular Injury through Mitochondrial Dysfunction in Hemolytic Uremic Syndrome

    Get PDF
    Shiga toxin (Stx)-producing Escherichia coli is the predominant offending agent of post-diarrheal hemolytic uremic syndrome (HUS), a rare disorder of microvascular thrombosis and acute kidney injury possibly leading to long-term renal sequelae. We previously showed that C3a has a critical role in the development of glomerular damage in experimental HUS. Based on the evidence that activation of C3a/C3a receptor (C3aR) signaling induces mitochondrial dysregulation and cell injury, here we investigated whether C3a caused podocyte and tubular injury through induction of mitochondrial dysfunction in a mouse model of HUS. Mice coinjected with Stx2/LPS exhibited glomerular podocyte and tubular C3 deposits and C3aR overexpression associated with cell damage, which were limited by C3aR antagonist treatment. C3a promoted renal injury by affecting mitochondrial wellness as demonstrated by data showing that C3aR blockade reduced mitochondrial ultrastructural abnormalities and preserved mitochondrial mass and energy production. In cultured podocytes and tubular cells, C3a caused altered mitochondrial fragmentation and distribution, and reduced anti-oxidant SOD2 activity. Stx2 potentiated the responsiveness of renal cells to the detrimental effects of C3a through increased C3aR protein expression. These results indicate that C3aR may represent a novel target in Stx-associated HUS for the preservation of renal cell integrity through the maintenance of mitochondrial function
    • …
    corecore