37 research outputs found

    Flexible terahertz wire grid polarizer with high extinction ratio and low loss

    Get PDF
    An aluminum-based THz wire grid polarizer is theoretically investigated and experimentally demonstrated on a sub-wavelength thin flexible and conformal foil of the cyclo-olefin Zeonor© polymer. THz time-domain spectroscopy characterization, performed on both flat and curved configurations, reveals a high extinction ratio between 40 and 45 dB in the 0.3-1 THz range and in excess of 30 dB up to 2.5 THz. The insertion losses are lower than 1 dB and are almost exclusively due to moderate Fabry-Perót reflections, which vanish at targeted frequencies. The polarizer can be easily fabricated with low-cost techniques such as roll-to-roll and/or large area electronics processes and promises to pen the way for a new class of flexible and conformal THz devices

    Positive-negative tunable liquid crystal lenses based on a microstructured transmission line

    Get PDF
    In this work, a novel technique to create positive-negative tunable liquid crystal lenses is proposed and experimentally demonstrated. This structure is based on two main elements, a transmission line acting as a voltage divider and concentric electrodes that distribute the voltage homogeneously across the active area. This proposal avoids all disadvantages of previous techniques, involving much simpler fabrication process (a single lithographic step) and voltage control (one or two sources). In addition, low voltage signals are required. Lenses with switchable positive and negative focal lengths and a simple, low voltage control are demonstrated. Moreover, by using this technique other optical devices could be engineered, e.g. axicons, Powell lenses, cylindrical lenses, Fresnel lenses, beam steerers, optical vortex generators, etc. For this reason, the proposed technique could open new venues of research in optical phase modulation based on liquid crystal materials.This work was supported by Comunidad de Madrid and FEDER Program (S2018/NMT-4326), the Ministerio de Economía y Competitividad of Spain (TEC2016-77242-C3-1-R and TEC2016-76021-C2-2-R), the FEDER/ Ministerio de Ciencia, Innovación y Universidades and Agencia Estatal de Investigación (RTC2017-6321-1). Also, the Ministry of National Defense of Poland (GBMON/13-995/2018/WAT)

    Media 2: Long-range plasmonic directional coupler switches controlled by nematic liquid crystals

    No full text
    Originally published in Optics Express on 08 April 2013 (oe-21-7-8240

    Media 1: Long-range plasmonic directional coupler switches controlled by nematic liquid crystals

    No full text
    Originally published in Optics Express on 08 April 2013 (oe-21-7-8240

    Terahertz focusing properties of polymeric zone plates characterized by a modified knife-edge technique

    No full text
    The focusing properties of a series of polymeric zone-plate lenses are investigated around a target frequency of 1 THz. Their characterization is performed by means of terahertz (THz) time-domain spectroscopy, employing a modified knife-edge technique that compensates for asymmetries of the impinging THz beam shape of typical photoconductive antenna-based THz sources. The samples are fabricated by a three-axis milling technique on slabs of an ultralow-loss cyclo-olefin polymer. Three different zone plates are studied, a conventional binary zone plate, a conventional four-level zone plate, and a recently introduced double-sided zone plate consisting of the stack of two phase-reversal binary zone plates, which is simpler to fabricate and less sensitive to mechanical damage than multilevel zone plates. Experimental results, coupled with finite element simulations, demonstrate that the double-sided zone plate features a resolution increased by about 3λ with respect to the binary zone plate and comparable with that of the four-level zone plate. The double-sided zone plate has 40% lower focusing efficiency and approximately 7λ shorter depth of field compared to its four-level counterpart. Nevertheless, it outperforms conventional binary zone plates by 25% in power focusing efficiency and features a 10λ longer depth of field

    Design-flow of Fabry-Perot cavity leaky-wave antennas based on homogenized metasurfaces

    No full text
    In this work, a design flow for leaky-wave antennas based on metasurfaces is proposed. In particular, the possibility to extract the surface impedance of partially reflecting surfaces (PRS) for which homogenization formulas are not yet available in the literature has been exploited by means of numerical tools. The knowledge of the surface impedance in a PRS-based Fabry-Perot cavity leaky-wave antenna (FPC-LWA) allows for accurately evaluating the radiating performance by means of simple analytical formulas. A fishnet-like metasurface is designed to validate the proposed approach and its implementation as a partially reflective sheet for a highly-directive FPC-LWA working at terahertz frequencies is discussed

    Design of a tunable THz 1-D leaky-wave antenna based on nematic liquid crystals

    No full text
    Very few designs are reported in the terahertz range for realizing dynamic beam-steering of the antenna radiation pattern at a fixed frequency. In this work, we propose a one-dimensional leaky-wave antenna based on nematic liquid crystals (NLC). More specifically, an NLC cell is sandwiched between two foam layers, the top one patterned with a partially reflecting sheet (PRS), and the bottom one entirely metalized to have a ground plane. Two lateral perfect magnetic conductor walls allow for a dominant TM leaky mode propagating in the structure. The beam is then steered by applying a low-frequency driving voltage through the ground and the PRS. The trade-off among radiation efficiency, angular steering range, and gain that commonly affects any reconfigurable antenna is properly handled through a suitable choice of the design parameters. Full-wave results are finally provided to demonstrate the concept

    Guided mode resonance flat-top bandpass filter for terahertz telecom applications

    No full text
    In this work, we design and experimentally demonstrate a novel terahertz (THz) filter exhibiting a flattened spectral response in the atmospheric transmission window around the central frequency of 300 GHz. The innovative concept behind this filter is the coupling of Fabry–Perot and guided mode resonances. The latter arise from a two-dimensional patch array patterned on an aluminum layer deposited on a low loss cyclo-olefin polymer. The filter experimental performance shows high transmittance in the flat-top band, with less than 3 dB losses, and high out-of-band rejection, as theoretically expected. This kind of component provides a cost-effective, functional solution for narrowband filtering in emerging THz devices and systems with possible applications in wireless telecommunications
    corecore