218 research outputs found

    Characterization of carbon contamination under ion and hot atom bombardment in a tin-plasma extreme ultraviolet light source

    Get PDF
    Molecular contamination of a grazing incidence collector for extreme ultraviolet (EUV) lithography was experimentally studied. A carbon film was found to have grown under irradiation from a pulsed tin plasma discharge. Our studies show that the film is chemically inert and has characteristics that are typical for a hydrogenated amorphous carbon film. It was experimentally observed that the film consists of carbon (~70 at. %), oxygen (~20 at. %) and hydrogen (bound to oxygen and carbon), along with a few at. % of tin. Most of the oxygen and hydrogen are most likely present as OH groups, chemically bound to carbon, indicating an important role for adsorbed water during the film formation process. It was observed that the film is predominantly sp3 hybridized carbon, as is typical for diamond-like carbon. The Raman spectra of the film, under 514 and 264 nm excitation, are typical for hydrogenated diamond-like carbon. Additionally, the lower etch rate and higher energy threshold in chemical ion sputtering in H2 plasma, compared to magnetron-sputtered carbon films, suggests that the film exhibits diamond-like carbon properties.Comment: 18 pages, 10 figure

    From Geometry to Activity: A Quantitative Analysis of WO3/Si Micropillar Arrays for Photoelectrochemical Water Splitting

    Get PDF
    The photoelectrochemical (PEC) activity of microstructured electrodes remains low despite the highly enlarged surface area and enhanced light harvesting. To obtain a deeper understanding of the effect of 3D geometry on the PEC performance, well‐defined WO3/n‐Si and WO3/pn‐Si micropillar arrays are fabricated and subjected to a quantitative analysis of the relationship between the geometry of the micropillars (length, pitch) and their PEC activity. For WO3/n‐Si micropillars, it is found that the photocurrent increases for WO3/n‐Si pillars, but not in proportion to the increase in surface area that results from increased pillar length or reduced pillar pitch. Optical simulations show that a reduced pillar pitch results in areas of low light intensity due to a shadowing effect. For WO3/pn‐Si micropillar photoelectrodes, the p–n junction enhances the photocurrent density up to a factor of 4 at low applied bias potential (0.8 V vs RHE) compared to the WO3/n‐Si. However, the enhancement in photocurrent density increases first and then decreases with reduced pillar pitch, which scales with the photovoltage generated by the p–n junction. This is related to an increased dead layer of the p–n junction Si surface, which results in a decreased photovoltage even though the total surface area increases.</p

    Surface and sub-surface thermal oxidation of thin ruthenium films

    Get PDF
    A mixed 2D (film) and 3D (nano-column) growth of ruthenium oxide has been experimentally observed for thermally oxidized polycrystalline ruthenium thin films. Furthermore, in situ x-ray reflectivity upon annealing allowed the detection of 2D film growth as two separate layers consisting of low density and high density oxides. Nano-columns grow at the surface of the low density oxide layer, with the growth rate being limited by diffusion of ruthenium through the formed oxide film. Simultaneously, with the growth of the columns, sub-surface high density oxide continues to grow limited by diffusion of oxygen or ruthenium through the oxide fil

    Erosion yields of carbon under various plasma conditions in Pilot-PSI

    Full text link
    Fine-grain graphite targets have been exposed to ITER divertor relevant plasmas in Pilot-PSI to address material migration issues in fusion devices. Optical emission spectroscopy and mass loss measurements have been employed to quantify gross chemical erosion and net erosion yields, respectively. Effects of the ion impact energy and target geometry on carbon erosion yields have been studied. It is concluded that temporal evolution of gross chemical erosion is strongly connected with changes in morphology of plasma exposed surfaces. The net carbon erosion yield is increased when the targets are partly covered by insulating boron-nitride rings.Comment: 14 pages, 4 figures, Contribution to the 19th International Conference on Plasma Surface Interaction
    • 

    corecore