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Abstract: The photoelectrochemical (PEC) activity of microstructured electrodes is still low 

despite the highly enlarged surface area and enhanced light harvesting. To obtain a deeper 

understanding of the effect of 3D geometry on the PEC performance, well-defined WO3/n-Si 

and WO3/pn-Si micropillar arrays are fabricated and subjected to a quantitative analysis of the 

relation between the geometry of the micropillars (length, pitch) and their PEC activity. For 

WO3/n-Si micropillars, it is found that the photocurrent increases for WO3/n-Si pillars, but not 

in proportion to the increase of surface area that results from increased pillar length or reduced 

pillar pitch. Optical simulations show that a reduced pillar pitch results in areas of low light 

intensity due to shadowing effect. For WO3/pn-Si micropillar photoelectrodes, the p-n junction 

enhances the photocurrent density up to a factor of 4 at low applied bias potential (0.8 V vs 

RHE) compared to the WO3/n-Si. However, the enhancement in photocurrent density increases 

mailto:A.Bieberle@differ.nl


2 

 

 

first and then decreases with reduced pillar pitch, which scales with the photovoltage generated 

by the p-n junction. This is related to an increased dead layer of the p-n junction Si surface, 

which results in a decreased photovoltage even though the total surface area increases. 

 

1. Introduction 

Hydrogen production from photoelectrochemical (PEC) water splitting using 

semiconductor photoelectrodes is a promising pathway towards the utilization of renewable 

energy for solar fuel applications[1–3]. For PEC water splitting, the oxygen evolution reaction 

(OER), which occurs at the photoanode, is more complex because it requires multiple bond 

rearrangements that involve the removal of four electrons and two protons from two H2O 

molecules.[2,4,5] In recent years, metal oxide films, such as TiO2, WO3, Fe2O3, and BiVO4, have 

been studied as the photoanode for catalysing PEC water oxidation reactions due to their 

suitable band gap, chemical stability and low cost[6–14]. However, the narrow spectral light 

absorption band and poor charge transport properties of these materials are certainly key factors 

in limiting the PEC efficiency[15–17]. Compared to these metal oxides, silicon (Si) has 

controllable electrical conductivity and a smaller band gap (1.1 eV), which can address the 

deficiencies of metal oxides functional films[18,19]. Nevertheless, Si has poor chemical stability 

because it is rapidly oxidized in aqueous solution under solar illumination or under anodic 

bias[20]. In this sense, metal oxide films combined with Si substrates show a complementary 

relation and offer a promising model for PEC electrode design. 

Furthermore, nano-/microstructured Si could concurrently reduce light reflection by 

trapping light inside the structures and provide more catalytic sites by increasing surface area. 

Based on this, research has been focused on nano-/microstructured Si coated with metal oxide 

films for PEC water splitting electrodes[18,21,22]. TiO2 coated Si nanowires showed 2.5 times 

higher photocurrent density on the projected area than the corresponding planar TiO2/Si[6] at 

1.23 V vs RHE. Fe2O3 on Si nanowires exhibited a current density of about 0.9 mA/cm2 at 
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1.23 V vs RHE, which was 2.5 times higher on the projected area than that of planar Fe2O3/FTO 

(FTO, fluorine doped tin oxide)[23]. Based on micropillar arrays, a porous structure of WO3 was 

built on the surface of Si micropillars. This increased the surface area and light harvesting of 

the micropillar arrays, achieving a 3 times increase in photocurrent density at 1.5 V vs Ag/AgCl 

compared to smooth WO3 coated micropillar arrays[24]. In all cases, the authors attribute the 

increased performance to the increased surface area and the enhanced light absorption. 

Summarizing all studies on nano-/microstructured electrodes, it is found that the 

photocurrent enhancement is quite low regarding the highly enlarged surface area and enhanced 

light harvesting. For nanostructured photoelectrodes, which are closed to the scale of the 

wavelength of light, nanophotonic effects have been studied to intensify light in the 

photocatalytic[24–27]. For microstructured photoelectrodes, the situation is different because they 

behave very much like the ray optics case. Increased surface area and decreased light reflection 

contribute to the PEC performance as described in the literature. However, it has not been 

systematically studied how much surface is really active during the PEC reaction and how this 

active surface area is related to the geometry of the microstructured electrodes. Aiming at these 

questions, and in order to provide guidance to design highly efficient photoelectrodes in the 

future, we focus this study on well-defined micropillar array structures coated with PEC active 

material. We select WO3 as the functional layer due to its high electron mobility (~12 cm2V-1s-
 

1 at room temperature) and suitable band-gap (2.6-2.9 eV)[12,28]. We fabricate n-type Si and 

 

radial p-n junction Si micropillar arrays as substrates to prepare WO3/n-Si and WO3/pn-Si 

micropillar array photoelectrodes. We systematically change the micropillar structure with 

pillar heights (10 μm and 40 μm) and pillar pitches (6 μm, 10 μm, 15 μm and 20 μm). These 

well-defined geometries allow for a quantitative study of the relation between surface area and 

PEC activity. It also allows to evaluate the importance of large surface area vs. high aspect ratio 

regarding optimized photoelectrode design. Furthermore, optical simulations are for the first 
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time carried out to study the intensity distribution of light incident on the pillar array surface. It 

contributes to illustrate the relation between the active surface area, i.e. the surface area under 

illumination, and the 3D geometry of the microstructured PEC electrodes. 

This research establishes a relation between the geometry of photoelectrodes and the 

PEC performance. It can be used to predict performance and provide guidelines for designing 

high performance photoelectrodes. 

 

2. Results and Discussion 

Figure 1 shows the scanning electron microscopy (SEM) images of Si micropillar arrays 

coated with WO3 after annealing in Ar. Well-defined and homogeneous micropillar arrays with 

different pillar length, 10 μm (Figure 1a) and 40 μm (Figure 1b) are fabricated. As shown in 

Figure 1c, the diameter of each single pillar is 4 μm. A detailed look at the wall of the pillars 

shows a pancake morphology (Figure 1c), which is due to the Si reactive ion etching process. 

Figure 1d and 1e show FIB cross-sectional SEM images from the top to the bottom of a single 

pillar. The bright and the dark part correspond to the WO3 and the Si, respectively. The pillars 

are fully covered by WO3 from top (Figure 1d) to bottom (Figure 1e). The crystalline structure 

of the WO3 was determined by Grazing Incidence X-ray diffraction (GIXRD). As shown in 

Figure S1, the diffraction peaks of the WO3 (black pattern) agree well with monoclinic WO3 

(JCPDS No. 83-0950), indicating that monoclinic WO3 is obtained from the amorphous WO3 

(as deposited, red pattern) after annealing in Ar. The average crystallite size in vertical direction 

d was calculated from the XRD pattern (black) width using the Scherrer equation, d 

= 0.9 λ/ (β cos θ), where λ is the X-ray wavelength (λ = 1.54060 Å), β is the full width at half- 

maximum (fwhm) of the diffraction peak, and θ is the diffraction angle. The vertical crystallite 

size was calculated from the fwhm of the [002] peak and resulted in an average vertical size of 

19.2 nm. The chemical composition of the WO3 films which were prepared using the same 

method as in our earlier studies, has been investigated by XPS in our previous work[29]. No 
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impurity elements were found in the detection limit. For the oxidation state of W after annealing 

in a protective gas environment, 85.9% W6+ and 14.1% W5+ were found, which suggested the 

existence of oxygen vacancies in WO3. The results showed that excess amounts of chemical 

defects can act as recombination centers which inhibit the electron transfer, thus decreasing the 

photocurrent generation. In the present work, all WO3 films were fabricated using a fixed recipe. 

Hence, the oxidation state of W should be similar for all electrodes and different PEC 

performance due to different oxygen vacancies is not seen here. 

These results confirm that well-defined WO3/n-Si micropillar array photoanodes are 

fabricated, allowing a quantitative analysis on the relation of PEC activity and the electrode 

geometry. 

 

   

Figure 1. Scanning Electron Microscopy (SEM) images of micropillar arrays coated with WO3 (a) 10 

μm in height, 6 μm pitch, (b) 40 μm in height, 6 μm pitch (c) close view of single pillar, (d) and (e) 

cross-sectional FIB cut from the top (d) and the bottom (e) of a single pillar. 

 

2.1 The PEC activity of WO3/n-Si micropillar arrays 

The PEC activity of the WO3/n-Si micropillar array electrodes is evaluated by the 

photocurrents as a function of the applied potential (0.4 - 1.6 V vs RHE), which were measured 

c d e 

a b 
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in 0.5 M H2SO4 under continuous AM 1.5 illumination. The photocurrent density is defined as 

the measured photocurrent divided by the projected surface area. The photocurrent densities 

obtained from two micropillar array electrodes with different pillar height are shown in Figure 

2a. The 10 μm height micropillar array electrode shows a photocurrent density of 0.13 mA/cm2 

at 1.23 V vs RHE (blue curve). This is more than twice as high as the photocurrent density of 

0.06 mA/cm2 at 1.23 V vs RHE obtained for the planar electrode (purple curve). The 

photocurrent densities of the sputtered WO3 films (200 nm) in this work are comparable to the 

literature. For planar sputtered WO3 films, the photocurrent densities vary between 0.02 and 

0.1 mA/cm2 at 1.23 V vs RHE. The thicknesses of these reported WO3 films vary from 50 to 

500 nm [29–33]. When the pillar height increases to 40 μm (same pillar pitch), the photocurrent 

density increases to 0.17 mA at 1.23 V vs RHE. To further investigate the relation between PEC 

activity and the geometry of the electrode, we fabricated micropillar array electrodes with 

various pillar pitches (SEM images in Figure S2). Figure 2b shows the PEC activity of the 

micropillar array electrodes with various pillar pitches. The photocurrent density increases with 

the reduced pillar pitch: 0.08 mA/cm2 (20 μm pitch), 0.1 mA/cm2 (15 μm pitch), 0.13 mA/cm2 

(10 μm pitch) and 0.17 mA/cm2 (6 μm pitch) at 1.23 V vs RHE. 

The enhancement of the photocurrent density from the microstructured electrodes is 

attributed to two reasons. One is that the microstructure enhances light harvesting by reducing 

the light reflectance[34–36]. In the wavelength range below 400 nm, in which the light is absorbed 

by the functional layer WO [29], the reflectance of micropillar array electrodes, with 10 μm 

height and 40 μm height, decreased around 10% and 15%, respectively, compared with the 

planar electrode (Figure S2a). In addition, for micropillar arrays with different pillar pitch, the 

reflectance slightly decreases as the pillar pitch reduces (Figure S2b). This is related to the 

rough ground surface of the micropillar arrays which results in diffuse light reflection, and the 

reflected light is absorbed by the pillars. 
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Another reason for the photocurrent density enhancement from the micropillar structure 

compared to the planar is the increased number of catalytic sites due to the increased surface 

area. Quantitative relation between photocurrent density and surface area of the microstructure 

electrodes is so far not reported in the literature. It is, however, important to understand the 

geometrical limitations in designing photoelectrodes. 

In this work, the well-defined geometry of the WO3/n-Si micropillar arrays allows for a 

quantitative analysis to relate the surface area of the electrode to the PEC activity. The projected 

surface area of all the electrodes under illumination during PEC measurements are about 0.2 

cm2, which is determined by epoxy encapsulating and measured by image analysis. The total 

surface area of the micropillar array electrode, STotal, can be calculated as 

𝑆 𝐷𝐻 
S𝑇𝑜𝑡𝑎𝑙 = S + π𝐷𝐻 × (

𝑃2) = (1 + π 
𝑃2 ) 𝑆 (2) 

where D is the diameter of the pillar, H is the height of the pillar, P is the pitch of the pillars, 

and S is the planar surface area; (Figure 2c). Figure 2d shows the photocurrent density at 1.23 V 

vs RHE (red curve) and the total surface area, ST, (blue curve) for WO3/n-Si micropillar arrays 

as a function of pillar pitch. Since the surface area of the planar electrode is defined as S, the 

total surface area of the micropillar array electrodes with different pillar pitch, 20 μm, 15 μm, 

10 μm, and 6 μm, can be calculated according to Eq. (2) as 2.3 S, 3.2 S, 6.0 S and 15.0 S, 

respectively. Comparing the two curves in Figure 2d reveals that the increase in photocurrent 

density is less than the increase in total surface area, in particular when the pillar pitch reduces 

from 10 μm to 6 μm. This means that the photocurrent does not increase proportional with the 

total surface area. In other words, reducing pillar pitch, i.e. having the pillars closer together, 

increases the surface area, but the additional surface area is not fully electrochemically active. 
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Figure 2. Photocurrent density vs applied potential curves under dark (black) and simulated sun light 

illumination (light intensity: 100 mW cm−2; electrolyte: 0.5 M H2SO4) for WO3/n-Si micropillar array 

electrodes with (a) different pillar height, 40 μm and 10 μm, and (b) different pillar pitch, 6 μm, 10 μm, 

15 μm and 20 μm. (c) Dimensional sketch for surface area calculation. (d) Photocurrent densities at 1.23 

V vs RHE (red) and total surface area, ST, (blue) of micropillar arrays as a function of pillar pitch. The 

error bars denote the standard deviation of two different repetitive measurements in two different 

samples. 

 
2.2 The PEC activity of WO3/pn-Si micropillar arrays 

To further improve the PEC activity, the n-Si micropillar array was doped with boron to 

form a radial p-n Si junction array. The sketch of the fabricated WO3/pn-Si micropillar array 

photoelectrode is shown in Figure 3a. It should be noted that the WO3/n-Si heterojunction can 

create a photovoltage due to the different Fermi levels of n-Si and WO3.
[32] In addition, the 

Fermi level of highly doped p-Si layer is between the Fermi levels of n-Si and WO3. 

Theoretically, the created photovoltage from the WO3/pn-Si should be the same as from the 
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WO3/n-Si. However, the WO3/n-Si heterojunction causes more recombinations of 

photogenerated carriers due to defects at the interface of between Si and WO3, which can result 

in a lower photovoltage than a homojunction, i.e. p-n junction in Si. Moreover, the introduced 

tandem p-n junction in Si can more efficiently utilize the light penetrated from the WO3. The 

created photovoltage can provide driving force for the charge transport during PEC water 

splitting. Figure 3b shows the working schematic of the p-n junction micropillar arrays under 

illumination during PEC process. Under illumination, the Si (band gap 1.1 eV[19]) absorbs the 

light that is penetrating through the WO3 layer (band gap 3.0 eV[29]), and it results in 

photogenerated electrons and holes in both the Si and the WO3. The photogenerated holes in 

the p-Si and the photogenerated electrons in the WO3 migrate to the interface of p-Si and WO3 

and recombine in a so-called Z-scheme[6,23] In the meantime, the photogenerated holes in the 

WO3 are driven to the WO3/electrolyte interface for water oxidation. Under illumination, the 

introduced p-n junction in Si creates a photovoltage (ΔVpn-Si, Figure 3b). This photovoltage can 

provide a driving force for the photogenerated carrier transport in the Z scheme system and thus 

enhances the PEC water splitting performance.[32,34] The photocurrent densities of the WO3/pn- 

Si micropillar array electrodes with different pillar pitch are shown in Figure 3c. Compared with 

WO3/n-Si (Figure 2), the WO3/pn-Si junction reduces the onset potential, which is lower than 

0.2 V vs RHE. In addition, the photocurrent densities of WO3/pn-Si are significantly higher 

than those of WO3/n-Si at low applied potential (0.2-1.2 V vs RHE). This improvement is due 

to the photovoltage created by the p-n junction in Si. While at higher applied potential, the 

photocurrent densities are similar for WO3/pn-Si and WO3/n-Si micropillar arrays. This is 

because the higher applied potential compensates for the lack of the driving force for electron 

transport in the WO3/n-Si. In other word, at high applied potential, the limitation of the PEC 

performance is the amount of photogenerated charges instead of the charge transport. Therefore, 

the improvement of the photocurrent density in going from WO3/n-Si to WO3/pn-Si is smaller. 
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Particularly, when the applied potential increases to 1.6 V vs RHE, the photocurrent of WO3/pn- 

Si structures with small pillar pitch (i.e. 6 μm) is even lower than that of the WO3/n-Si structures 

without p-n junction. This can be attributed to the dead layer arising from the heavily p-doped 

surface of Si,[37] which causes increased recombination of the photogenerated carriers. 

To further quantitatively evaluate the effect of the microstructure geometry on the 

photocurrent enhancement of the WO3/pn-Si micropillar arrays, Figure 3d illustrates the relation 

between the photocurrent densities at a lower applied potential (0.8 V vs RHE) and the total 

surface area as a function of the pillar pitch. The photocurrent densities of WO3/pn-Si 

micropillar array electrodes increase first and then decrease as the pillar pitch decreases. As 

shown in the Figure 3d (red curve with open symbol), the photocurrent density increases from 

0.14 mA/cm2 to 0.16 mA/cm2, when the pillar pitch reduces from 20 μm to 15 μm. However, 

when the pillar pitch further reduces to 10 μm, and 6 μm, the photocurrent density decreases to 

0.13 mA/cm2, and 0.12 mA/cm2, respectively. This trend is different for the WO3/n-Si (red 

curve with filled symbol), which keeps increasing as the pillar pitch decreases, albeit at much 

slower increasing rate than the increased total surface area (blue curve). The photocurrent 

enhancements from the p-n junction for the WO3/pn-Si micropillar arrays with different pillar 

pitch are 0.11 mA/cm2 (20 μm), 0.12 mA/cm2 (15 μm), 0.07 mA/cm2 (10 μm) and 0.05 mA/cm2 

(6 μm). The enhancement at this relatively low applied potential (0.8 V vs RHE) benefits from 

the generated photovoltage by the p-n junction. Therefore, these results indicate that the 

photovoltage created by the p-n junction varies with the pillar pitch. This can be due to the dead 

layer caused by the heavily p-doped surface of the Si. When the pillar pitch is reduced to 

increase the surface area, the dead layer is increased and locks more absorbed photons. As a 

result, the function of the p-n junction below the dead layer in the Si is limited by the lack of 

photons. 
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Figure 3. (a) Sketch of the WO3/pn-Si micropillar array photoelectrodes. (b) Schematic illustration of 

the band diagrams of WO3/pn-Si micropillar array photoelectrodes under illumination. (c) Photocurrent 

density vs. applied potential curves of WO3/pn-Si micropillar arrays with 40 μm pillar height, and 

different pillar pitch, 6 μm, 10 μm, 15 μm and 20 μm. (d) Photocurrent densities at 0.8 V vs RHE (red) 

and total surface area (blue) of WO3/n-Si and WO3/pn-Si micropillar arrays with different pillar pitch. 

The error bars denote the standard deviation of two different repetitive measurements in two different 

samples. 

To evaluate the relation between the photovoltage and the pillar pitch, we carried out 

VOC measurements for the WO3/pn-Si micropillar arrays under chopped monochromatic IR 

illumination. The idea is that due to the different bandgaps of Si (~1.1 eV[19]) and WO3 (~3.0 eV 

from our previous work[29]), the Si can be excited selectively by IR illumination (wavelength, 980 

nm), which allows obtaining the decoupled photovoltage from the pn-Si only. Under IR 

illumination, electron–hole pairs are generated in Si only. The holes migrate toward the interface 

with WO3 in the built-in field and partly recombine with available electrons in the 

b 



12 

 

 

WO3. Therefore, the Fermi level (EF) in n-Si shifts upwards and in WO3 shifts downwards, 

resulting in a more cathodic VOC. The photovoltage created in the circuit can be determined by 

the change of the open circuit potential (VOC) under illumination.[32] As shown in Figure 4, 

under chopped IR illumination, the VOC shows a cathodic shift of 0.47 V, 0.50 V, 0.6 V and 

0.57 V, for the WO3/pn-Si micropillar arrays with pillar pitch of 6 μm, 10 μm, 15 μm, and 20 

μm, respectively. The amounts of the created photovoltage are according to the amounts of the 

photocurrent enhancements for the WO3/pn-Si micropillar arrays with different pillar pitch 

(Figure 3d). These results also support that the reduced pillar pitch increases the dead layer 

which leads to a reduced photovoltage created by the p-n junction. 

 

Figure 4. Open circuit potential (VOC) versus elapsed time for WO3/pn-Si micropillar arrays with 

different pillar pitch under chopped IR (λ = 980 nm) illumination (electrolyte: 0.5 M H2SO4). 
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2.3 Optical simulations 

The activity of the WO3 on the micropillars is also influenced by the accepted light 

intensity under illumination, which is related to the 3D geometry of the microstructure. Unlike 

nanostructured photoelectrodes, in which the nanophotonic effects come into play[24–27], the 

microstructured photoelectrodes behave mostly like the ray optics case. Under experimental 

conditions, the light incident angle is usually not exactly 0°. Therefore, shadowing effects can 

result in surface area with lower light intensity under illumination, as shown in Figure 5. It 

should be pointed out that the light penetration depth in Si is a function of light wavelength, 

which is ≤100 nm for the light below ~400 nm.[38] As a results, with a band gap of ~3.0 eV, the 

WO3 located at the shadowed area cannot be excited by the light penetrated through the Si. 

Therefore, the PEC activity of the WO3/Si micropillar array electrodes are influenced by the 

incident light fallen on the WO3 surface area (including the reflected light). 

 

 
Figure 5. Sketch of the WO3/Si micropillar under illumination. 

To evaluate the relation between the light incident surface area and the geometry of the 

micropillar electrodes, we carried out optical simulations using the ray-tracing software LUX 

(developed at TU Delft), which can determine the intensity distribution of the light illuminated 

on the surface of micropillar arrays (including the reflected light). The details of the simulation 

methods are described in experimental section 2.5. Figure 6a shows the relative incident 

intensity distribution map of light illuminated on simulated “metallic-like”, i.e. no light 
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transmission, micropillar arrays with different pillar pitch using a small incident angle of 1°. It 

can be seen that the flat area including the pillars top and the floor are illuminated with a higher 

light intensity. The wall surface of the pillars, on the other hand, is illuminated with a lower 

light intensity. In addition, the shadowing of the pillars appears on the floor, and the shadowing 

area increases as the pillar density increases, i.e. as the pillar pitch is reduced. Particularly, when 

the pillars pitch is reduced to 6 μm, the shadowing of the pillars is even casted on the adjacent 

pillars, not only on the floor. Figure 6b demonstrates the relation between the light illuminated 

area and the pillar pitch for different incident angles. Note that we consider an area to be 

‘illuminated’ when it receives an irradiance that is at least 0.2 of the incident beam normal 

irradiance (in W/m2). It shows that the high intensity light illuminated area decreases with the 

reduced pillar pitch. This decrease becomes larger when the incident angle increases from 1° to 

10°. The optical simulation results confirm that the reduced pillar pitch increases the total 

surface area of the photoelectrode, but at the same time decreases the factional area that is 

actually illuminated. The correspondingly larger shadowed area means that a larger fraction of 

the surface is inactive for the PEC reaction. This could explain that the photocurrent density 

increases much slower than the total surface area with reduced pillar pitch of the WO3/n-Si 

micropillar arrays (Figure 2d). 
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Figure 6. (a) Optical simulations of the intensity distribution map of light illuminated on “metallic” 

micropillar arrays with different pillar pitch, 6 μm, 10 μm, 15 μm, and 20 μm. (Pillar height 40 μm; light 

incident angle 1°). (b) Optical simulation results of the total surface area with area of light intensity >0.2 

under different incident angle (red curve), and the total surface area (blue curve) for micropillar arrays 

with different pillar pitch. 

Pitch 20 μm 
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Based on the discussion above, instead of just increasing the total surface area by 

pursuing high aspect ratio, the geometry needs to specifically enlarge the illuminated area for 

the 3D microstructure photoelectrode design. Here, to reduce the shadowing effects, we suggest 

a micro-cone design for high performance microstructured photoelectrodes for water splitting, 

as shown in Figure 7a. Optical simulations are carried out to demonstrate the light density 

under illumination of the micro-cone array structure. Figure 7b illustrates the light intensity 

map of the micro-cone arrays under illumination at an incident angle of 1°. Compared to the 

micropillar arrays (Figure 5a), there are no obvious shadowing areas on the ground or on the 

wall surface of the cone-shapes. In addition, the light density on the wall surface of the micro- 

cones is higher than that for the micropillar array structure. 

 

a 

 
Figure 7. (a) A promising cone-shape micro structure with p-n junction. (b) Optical simulation of the 

light intensity map of the cone-shape micro structure under illumination (light incident angle 1°). 

 

3. Summary and Conclusion 

Well-defined Si micropillar arrays are prepared on Si wafers using photolithography and 

deep reactive ion etching. The fabricated WO3/n-Si micropillar array electrodes show up to 3 

times enhancement of the photocurrent density at an applied potential of 1.23 V vs RHE in PEC 

water splitting. In order to further increase the performance at low applied potential, a radial p-

n junction is introduced using boron doping of the n-Si micropillar arrays; the p-n junction can 

provide a photovoltage that benefits the electron transport. Indeed, an up to 4 times 
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higher photocurrent density was achieved at low potential (0.8 V vs RHE) for the WO3/pn-Si 

micropillar array electrodes compared to the WO3/n-Si electrodes. 

The well-defined micro-structure allows for quantitative study of the relation between 

the PEC performance and the electrode geometry. The results reveal that the PEC activity does 

not show a linear relation with the increased surface area resulting from an increased pillar 

length or a reduced pillar pitch. Optical simulations of the intensity distribution resulting from 

illumination at various incident angles reveal that the reduced pillar pitch, i.e. having the pillars 

closer together, decreases the fraction of highly illuminated area. Any area with low light 

intensity, i.e. shadowed area, is inactive surface area for the PEC reaction. This can be a reason 

for the small increase in photocurrent density compared to the large increase in total surface 

area in WO3/n-Si micropillar arrays. Based on the results, we propose a promising micro-cone 

array structured photoelectrode. Optical simulations demonstrate that this structure can reduce 

the shadowing effects under illumination. 

In the case of WO3/pn-Si micropillar arrays, the photocurrent density increases first and 

then decreases, when the pillar density is increased. By measuring the open circuit potential 

under chopped monochromatic IR illumination, it is proven that the photocurrent density 

enhancement in WO3/pn-Si micropillar arrays is dominated by the photovoltage created at the 

p-n junction. However, with reduced pillar pitch, the increased surface area also causes 

increased dead layer, i.e. the heavily p-doped Si surface, which reduces the created 

photovoltage by the p-n junction, and therefore causes a decreased enhancement on the 

photocurrent density. 

This research provides a deeper understanding of the effect of 3D geometry on the PEC 

performance using well-defined WO3/n-Si and WO3/pn-Si micropillar arrays. The well-defined 

geometry of the electrodes allows for the first time relating light density distribution and 
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microstructure geometry of the photoelectrode, thereby expressing how this relation has impact 

on the PEC performance. In general, this work shows the potential of using Si processing for 

tailored design of 3D nano-/microstructure and for high performing electrodes. 

 

4. Experiments Section 

Fabrication of n-Si and pn-Si micropillar arrays: The n-type Si (n-Si) and p-n junction 

Si (pn-Si) micropillar arrays were fabricated as previously reported[39,40] and the fabrication 

process is shown schematically in Figure 8. In summary, n-type Si {100} (1–10 Ω cm, 100 mm 

diameter, 375 μm thickness, single side polished, Cz-grown, Okmetic Finland) were cleaned 

and covered with 100 nm silicon-rich silicon nitride (SiNx) via low-pressure chemical vapor 

deposition (LPCVD). On the polished side, the SiNx was removed by reactive ion etching (RIE, 

Adixen AMS100DE) and cleaned by means of oxygen plasma (30 min) and piranha (mixture 

of sulfuric acid and 30% aqueous hydrogen peroxide, 3:1 (v/v), 20 min). By means of standard 

photolithography (Olin 907-17 photoresist), the substrate was patterned with arrays of 

hexagonally packed dots (4 μm diameter, 6 μm, 10 μm, 15 μm and 20 μm pitch, 0.5 × 0.5 cm2 

squares on a specimen of 2 cm × 2 cm). This pattern was transferred into the silicon by deep 

reactive ion etching (CF-chemistry, Adixen AMS100SE). The height of the pillar arrays was 

controlled by the etching time, where the etching rate of silicon was about 3.2 μm min−1. The 

substrates were cleaned subsequently in oxygen plasma (30 min) and piranha (20 min) to 

remove the photoresist and fluorocarbon residues. 

The radial np junction was formed by a solid source doping of boron. The wafers were 

cleaned in room temperature 99% nitric acid, 95℃ 69% nitric acid and 1% aqueous HF solution 

subsequently, rinsed thoroughly in DI water between each step, and finally dried. They were 

then placed in a furnace with the top side of the wafer facing (but not touching) a boron nitride 

wafer which served as a source of boron. A layer of boron oxide was grown on the wafers at 

900℃ in an atmosphere of 2 standard liters per minute (SLM) N2 and 2 SLM O2 for 15 min, 
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and the atmosphere was changed to only N2 (4 SLM) and the temperature of the furnace was 

further increased to 1050℃. It remained in that condition for 15 min to diffuse the boron from 

the boron oxide into the silicon, and then it was cooled down again and removed from the 

furnace. After the thermal diffusion step, the boron oxide was removed by immersion in BHF 

(NH 4 F-buffered aqueous HF) for 10 min, and the silicon nitride from the backside of the 

substrate was stripped in 50% aqueous HF (30 min). 

 

 

Figure 8. Schematic fabrication process of n-Si and pn-Si micropillar arrays. (A) Removal of topside 

silicon nitride (SiNx) followed by photolithography. (B) Deep reactive ion etching of Si. (C) Removal 

of photoresist and SiNx. (D) Boron oxide deposited from solid source. (E) Formation of the radial 

junction, by a drive-in step at 1050 °C for 15 min. (F) Removal of SiNx. 

WO3 films fabrication: The Si micropillar arrays were cleaned sequentially in an 

ultrasonic bath of isopropanol and distilled (DI) water each for 20 min before WO3 deposition. 

WO3 films were deposited by reactive RF sputtering with a Bestec GmbH sputter tool using a 

2 in. metallic tungsten target (Karl Jesko, purity 99.95%) with a target−substrate distance of 

∼100 mm. The gas mixture was 40/10 sccm Ar/O2, where the O2 is inserted at the sample 

position and the Ar at the W target. The main deposition parameters are listed in Table 1. 

Table 1: Sputtering process parameters for WO3 deposition. 
 

Parameter Value 
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Target power 100 W 

Base pressure <10-8 mbar 

Deposition pressure 10-2 mbar 

Substrate temperature Room temperature 

O2 flow rate 10 sccm 

Ar flow rate 40 sccm 

 

After deposition, all samples were annealed at 450°C in Ar for 1 h with a ramping rate 

of 5°C/min using a tubular furnace with a quartz tube (Carbolite Gero). The Ar gas flow was 

started 30 min prior to annealing to guarantee a stable gas atmosphere. 

Characterizations: The morphologies of the micropillar array electrodes were 

investigated by a field emission scanning electron microscope (SEM) (Zeiss Sigma, Germany) 

with an in-lens detector and 5 kV accelerating voltage. Cross-sectional SEM sample preparation 

and imaging was performed using a focused ion beam (FIB) and the scanning electron 

microscope of the FIB/SEM Dualbeam (FEI, The Netherlands). A focused beam of 30 kV Ga- 

ions is used to cut a crater at normal angle of incidence into a surface. The crater wall is imaged 

with the SEM at 10 kV x 0.5 nA at an angle. For this setup the sample table is tilted to 52° to 

allow normal incidence for the ion beam. The scale bar corrects for the tilt in the SEM image 

to allow for correct dimensions on the crater wall. For cutting the micropillars no protection 

layer was used since the top was already protected with WO3 layer of several hundred 

nanometers. 

PEC measurements: A three-electrode PEC cell with a quartz window was used to 

measure the PEC performance at room temperature. Simulated sunlight illumination was 

performed by an AM 1.5 class A solar simulator (LCS 100, Oriel Instruments) using a 100 W 

Xe lamp with a calibrated illumination intensity of 100 mW cm−2 at the sample position. The 
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light source was calibrated with a calibrated reference cell and meter (Newport, model 91150 

V). The monochromatic light illumination was carried out using an IR laser (λ = 960 nm, cw, 

200 mW) as light source. The micropillar array electrodes (working electrodes) were 

encapsulated in epoxy (Loctite EA 9492) resulting in exposed micropillar array areas of about 

0.2 cm2. The exact geometrical area of the exposed electrode surface was determined by 

calibrated digital images and ImageJ software. For ohmic contact to the n-Si (backside of the 

electrodes), a drop of Ga/In eutectic (Sigma Aldrich) was used to contact the Si and a copper 

wire. A coiled Pt wire (0.8 mm diameter) and an Ag/AgCl/Sat. KCl electrode (XR 300, 

Radiometer Analytical) were used as the counter and reference electrode, respectively. An 

aqueous solution of 0.5 M H2SO4 (pH ~0.3) was used as electrolyte. The potential of the 

electrode was controlled with a BioLogic SP-150 potentiostat. All potentials reported in PEC 

results in this study are given versus reversible hydrogen electrode (RHE) through the relation[4] 

Φ𝑅𝐻𝐸 = Φ𝐴𝑔/𝐴𝑔𝐶𝑙 + Φ𝑜 
⁄ + 0.059 × 𝑝𝐻 (1) 

𝐴𝑔 𝐴𝑔𝐶𝑙 𝑣𝑠 𝑅𝐻𝐸 

 

with ΦºAg/AgCl is 0.197 V versus RHE at 25°C. Linear sweep voltammetry (LSV) measurements 

were performed at potentials between 0.4 V and 1.6 V versus RHE at a scan rate of 10 mV s-1. 

Optical simulation: Optical simulations are performed to determine the intensity 

distribution of light on the micropillar arrays. The ray-tracing software LUX (developed at TU 

Delft) is used, which makes use of periodic boundary conditions. This allows for efficient three- 

dimensional simulation of an infinite array of pillars, taking into account all optical interactions, 

such as reflections and shading between all neighbouring pillars. It does so by considering one 

unit cell, containing a single pillar on a square base with periodic boundary conditions applied 

to the four side walls of the unit cell. The pillar and base are discretized into approximately 

4000 surface elements. The top of the domain acts as the light source from which 105 parallel 

rays are emitted. The paths of all rays are traced efficiently using a parallelization algorithm. A 
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ray hitting a surface element is partly absorbed and partly reflected. The reflected light is given 

as a cosine-squared angular distribution. A ray can undergo multiple reflections until it is either 

fully absorbed or escapes the simulation domain at the top. After all rays have been traced, the 

intensity absorbed in each of the surface elements is obtained and normalized by dividing it by 

the intensity of the incident beam. A statistical analysis of these results reveals the number of 

surface elements and the corresponding surface area per unit cell that is illuminated (i.e. not 

shadowed). 

Supporting Information 

Supporting Information is available from the Wiley Online Library or from the author. 
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Figure 1. Scanning Electron Microscopy (SEM) images of micropillar arrays coated with WO3 (a) 10 

μm in height, 6 μm pitch, (b) 40 μm in height, 6 μm pitch (c) close view of single pillar, (d) and (e) 

cross-sectional FIB cut from the top (d) and the bottom (e) of a single pillar. 

a b 

c d e 
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Figure 2. Photocurrent density vs applied potential curves under dark (black) and simulated sun light 

illumination (light intensity: 100 mW cm−2; electrolyte: 0.5 M H2SO4) for WO3/n-Si micropillar array 

electrodes with (a) different pillar height, 40 μm and 10 μm, and (b) different pillar pitch, 6 μm, 10 μm, 

15 μm and 20 μm. (c) Dimensional sketch for surface area calculation. (d) Photocurrent densities at 1.23 

V vs RHE (red) and total surface area, ST, (blue) of micropillar arrays as a function of pillar pitch. The 

error bars denote the standard deviation of two different repetitive measurements in two different 

samples. 
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Figure 3. (a) Sketch of the WO3/pn-Si micropillar array photoelectrodes. (b) Schematic illustration of 

the band diagrams of WO3/pn-Si micropillar array photoelectrodes under illumination. (c) Photocurrent 

density vs. applied potential curves of WO3/pn-Si micropillar arrays with 40 μm pillar height, and 

different pillar pitch, 6 μm, 10 μm, 15 μm and 20 μm. (d) Photocurrent densities at 0.8 V vs RHE (red) 

and total surface area (blue) of WO3/n-Si and WO3/pn-Si micropillar arrays with different pillar pitch. 

The error bars denote the standard deviation of two different repetitive measurements in two different 

samples. 

b 
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Figure 4. Open circuit potential (VOC) versus elapsed time for WO3/pn-Si micropillar arrays with 

different pillar pitch under chopped IR (λ = 980 nm) illumination (electrolyte: 0.5 M H2SO4). 
 

 
 

 
Figure 5. Sketch of the WO3/Si micropillar under illumination. 
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Pitch 15 μm 
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Figure 6. (a) Optical simulations of the intensity distribution map of light illuminated on “metallic” 

micropillar arrays with different pillar pitch, 6 μm, 10 μm, 15 μm, and 20 μm. (Pillar height 40 μm; light 

incident angle 1°). (b) Optical simulation results of the total surface area with area of light intensity >0.2 

under different incident angle (red curve), and the total surface area (blue curve) for micropillar arrays 

with different pillar pitch. 
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a 

 
Figure 7. (a) A promising cone-shape micro structure with p-n junction. (b) Optical simulation of the 

light intensity map of the cone-shape micro structure under illumination (light incident angle 1°). 

 

 

 

 

Figure 8. Schematic fabrication process of n-Si and pn-Si micropillar arrays. (A) Removal of topside 

silicon nitride (SiNx) followed by photolithography. (B) Deep reactive ion etching of Si. (C) Removal 

of photoresist and SiNx. (D) Boron oxide deposited from solid source. (E) Formation of the radial 

junction, by a drive-in step at 1050 °C for 15 min. (F) Removal of SiNx. 
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Well-defined WO3/n-Si and WO3/pn-Si micropillar arrays are fabricated and subjected to a 

quantitative analysis of the relation between the geometry and PEC activity. It is found that a 

reduced pillar pitch results in areas of low light intensity due to shadowing effect and increases 

the dead layer of the p-n junction Si surface, which results in a decreased PEC activity. 
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Cystaline Structure of WO3 

The crystalline phase of the WO3 film was characterized by a Bruker D8 Eco X-ray 

diffractometer (XRD) with a Cu Kα (λ = 1.5406 Å) source and a Lynx-eye detector in a grazing 

incidence configuration at an incident angle of 3° and in the 2θ range from 20° to 60°. Figure 

S1 shows the GIXRD spectra of the WO3/Si micropillar arrays elcectrode before (red) and after 

(black) annealing in Ar at 450℃ for 1 h. The diffraction peaks of the pattern after annealing 

agree well with monoclinic WO3 corresponding to JCPDS No. 83-0950 indicating that 

monoclinic WO3 was obtained after annealing. 
 

 
 

Figure S1: GIXRD spectra of Si micropilar arrays coated WO3 after annealing in Ar. 
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The light reflectance of WO3/Si micropillar array electrodes was investigated using a Perkin 

Elmer 1050 UV/Vis/NIR spectrophotometer along with 150 mm integrating sphere in the 

wavelength range of 300 nm to 850 nm with a step size of 5 nm. Figure S2 shows the reflectance 

spectra of the WO3/Si micropillar arrays with different height and pitch of the pillars. All 

reflectance curves show a meandering shape as a function of wavelength, which is related to 

the interference of the light reflected from the WO3 surface and the WO3/Si interface. As shown 

in Figure S2a, the micropillar array structures have lower light reflectance than the planar 

electrode. As the pillars become longer, the light reflectance decreases. In the wavelength range 

below 400 nm (inset in Figure S2a), in which the light is absorbed by the WO3, the reflectance 

of micropillar array electrodes, with 10 μm height and 40 μm height, decreased around 10% 

and 15%, respectively, compared with the planar electrode. For 40 μm long pillars, the light 

reflectance slightly decrease with reduced pillars pitch (Figure S2b). 
 

 

a 
 
 
 
 
 
 
 
 

Figure S2: Reflectance spectra of WO3/Si micropillar arrays with (a) different pillars height, and (b) 

different pillars pitch. 

b 
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