13 research outputs found

    A global map of saltmarshes

    Get PDF
    Background Saltmarshes are extremely valuable but often overlooked ecosystems, contributing to livelihoods locally and globally through the associated ecosystem services they provide, including fish production, carbon storage and coastal protection. Despite their importance, knowledge of the current spatial distribution (occurrence and extent) of saltmarshes is incomplete. In light of increasing anthropogenic and environmental pressures on coastal ecosystems, global data on the occurrence and extent of saltmarshes are needed to draw attention to these critical ecosystems and to the benefits they generate for people. Such data can support resource management, strengthen decision-making and facilitate tracking of progress towards global conservation targets set by multilateral environmental agreements, such as the Aichi Biodiversity Targets of the United Nations' (UN's) Strategic Plan for Biodiversity 2011-2020, the Sustainable Development Goals of the UN's 2030 Agenda for Sustainable Development and the Ramsar Convention. New information Here, we present the most complete dataset on saltmarsh occurrence and extent at the global scale. This dataset collates 350,985 individual occurrences of saltmarshes and presents the first global estimate of their known extent. The dataset captures locational and contextual data for saltmarsh in 99 countries worldwide. A total of 5,495,089 hectares of mapped saltmarsh across 43 countries and territories are represented in a Geographic Information Systems polygon shapefile. This estimate is at the relatively low end of previous estimates (2.2-40 Mha), however, we took the conservative approach in the mapping exercise and there are notable areas in Canada, Northern Russia, South America and Africa where saltmarshes are known to occur that require additional spatial data. Nevertheless, the most extensive saltmarsh worldwide are found outside the tropics, notably including the low-lying, ice-free coasts, bays and estuaries of the North Atlantic which are well represented in our global polygon dataset. Therefore, despite the gaps, we believe that, while incomplete, our global polygon data cover many of the important areas in Europe, the USA and Australia

    The large‐scale drivers of population declines in a long‐distance migratory shorebird

    No full text
    Migratory species can travel tens of thousands of kilometers each year, spending different parts of their annual cycle in geographically distinct locations. Understanding the drivers of population change is vital for conserving migratory species, yet the challenge of collecting data over entire geographic ranges has hindered attempts to identify the processes leading to observed population changes. Here, we use remotely sensed environmental data and bird count data to investigate the factors driving variability in abundance in two subspecies of a long-distance migratory shorebird, the bar-tailed godwit Limosa lapponica. We compiled a spatially and temporally explicit dataset of three environmental variables to identify the conditions experienced by each subspecies in each stage of their annual cycle (breeding, non-breeding and staging). We used a Bayesian N-mixture model to analyze 18 years of monthly count data from 21 sites across Australia and New Zealand in relation to the remote sensing data. We found that the abundance of one subspecies L. l. menzbieri in their non-breeding range was related to climate conditions in breeding grounds, and detected sustained population declines between 1995 and 2012 in both subspecies (L. l. menzbieri, –6.7% and L. l. baueri, –2.1% year–1). To investigate the possible causes of the declines, we quantified changes in habitat extent at 22 migratory staging sites in the Yellow Sea, East Asia, over a 25-year period and found –1.7% and –1.2% year–1 loss of habitat at staging sites used by L. l. menzbieri and L. l baueri, respectively. Our results highlight the need to identify environmental and anthropogenic drivers of population change across all stages of migration to allow the formulation of effective conservation strategies across entire migratory ranges

    Patterns and determinants of shorebird species richness in the circumpolar Arctic

    No full text
    Aim The intention with this study was first to investigate and describe the broad-scale geographical patterns of species richness of breeding shorebirds (Charadriiformes; families: Charadriidae, Scolopacidae and Haematopodidae) throughout the arctic tundra biome. Secondly, after compensating for the positive relationship between net primary productivity (NPP) and species richness, the relative importance of additional ecological and historical variables for species richness was investigated. The main variables considered are NPP, length of snow- and ice-free season, accessibility of regions depending on migratory flyway systems, tundra area at Pleistocene (120 and 20-18 ka bp) and Holocene (8 ka bp) times, and tundra area at present. Methods Information on shorebird species breeding distributions was compiled from distribution atlases and species accounts. The breeding distributions of shorebirds with ranges partly or completely in the Arctic (a total of 50 species) were mapped in ArcView 3.2 to create a raster grid layer of shorebird species richness at a 1degrees latitude x longitude resolution. The total and mean species richness value was calculated per each 10degrees of longitude sector of the Arctic. The relationships between species richness and the different climatic and environmental variables were analysed on the basis of this sector-wise division of the arctic tundra. The influence of each variable on species richness was investigated using univariate and multivariate analyses (multivariate linear regression and general linear model). Results We found that patterns of breeding shorebird species richness in the Arctic tundra biome are to a large degree determined by the NPP, the length of the snow- or ice-free season, the diversity of migratory flyways, as well as the historical extent of tundra habitat area during the maximum cooling of the last glacial period. Essentially, two main regions are distinguishable in the circumpolar Arctic regarding shorebird community richness. These are a species-rich Beringia-centred region and a species-poor Atlantic-centred region. Main conclusions The underlying explanations to these major trends may primarily be attributed to factors that operate at present through accessibility of areas from contemporary migration flyways, as well as processes that operated in the past during and after the last glacial cycle. The most prominent influence on the shorebird diversity was found for NPP in combination with the diversity of migratory flyways. These flyways provide the links between breeding and wintering resources, often separated by huge distances, and the geographical and ecological conditions associated with the shorebirds' migration seem to be of particular importance for their breeding diversity in different sectors of circumpolar tundra
    corecore