89 research outputs found

    Successful Use of Squeezed-Fat Grafts to Correct a Breast Affected by Poland Syndrome

    Get PDF
    This study attempted to reconstruct deformities of a Poland syndrome patient using autologous fat tissues. All injected fat tissues were condensed by squeezing centrifugation. Operations were performed four times with intervals over 6 months. The total injection volume was 972 ml, and the maintained volume of 628 ml was measured by means of a magnetic resonance image (MRI). The entire follow-up period was 4.5 years. After surgery, several small cysts and minimal calcifications were present but no significant complications. The cosmetic outcomes and volume maintenance rates were excellent despite the overlapped large-volume injections. In conclusion, higher condensation of fat tissues through squeezing centrifugation would help to achieve better results in volume maintenance and reduce complications. It is necessary, however, to perform more comparative studies with many clinical cases for a more scientific analysis. The study experiments with squeezed fat simply suggest a hypothesis that squeezing centrifugation could select healthier cells through pressure disruption of relatively thinner membranes of larger, more vulnerable and more mature fat cells

    A New Approach for Adipose Tissue Treatment and Body Contouring Using Radiofrequency-Assisted Liposuction

    Get PDF
    A new liposuction technology for adipocyte lipolysis and uniform three-dimensional tissue heating and contraction is presented. The technology is based on bipolar radiofrequency energy applied to the subcutaneous adipose tissue and subdermal skin surface. Preliminary clinical results, thermal monitoring, and histologic biopsies of the treated tissue demonstrate rapid preaspiration liquefaction of adipose tissue, coagulation of subcutaneous blood vessels, and uniform sustained heating of tissue

    The Cellular Mechanism for Water Detection in the Mammalian Taste System

    Get PDF
    Initiation of drinking behavior relies on both internal state and peripheral water detection. While central neural circuits regulating thirst have been well studied, it is still unclear how mammals recognize external water. Here we show that acid-sensing taste receptor cells (TRCs) that were previously suggested as the sour taste sensors also mediate taste responses to water. Genetic silencing of these TRCs abolished water-evoked responses in taste nerves. Optogenetic self-stimulation of acid-sensing TRCs in thirsty animals induced robust drinking responses toward light even without water. This behavior was only observed when animals were water-deprived but not under food- or salt-depleted conditions, indicating that the hedonic value of water-evoked responses is highly internal-state dependent. Conversely, thirsty animals lacking functional acid-sensing TRCs showed compromised discrimination between water and nonaqueous fluids. Taken together, this study revealed a function of mammalian acid-sensing TRCs that provide a cue for external water

    Regulation of BMAL1 Protein Stability and Circadian Function by GSK3β-Mediated Phosphorylation

    Get PDF
    Circadian rhythms govern a large array of physiological and metabolic functions. To achieve plasticity in circadian regulation, proteins constituting the molecular clock machinery undergo various post-translational modifications (PTMs), which influence their activity and intracellular localization. The core clock protein BMAL1 undergoes several PTMs. Here we report that the Akt-GSK3beta signaling pathway regulates BMAL1 protein stability and activity.GSK3beta phosphorylates BMAL1 specifically on Ser 17 and Thr 21 and primes it for ubiquitylation. In the absence of GSK3beta-mediated phosphorylation, BMAL1 becomes stabilized and BMAL1 dependent circadian gene expression is dampened. Dopamine D2 receptor mediated signaling, known to control the Akt-GSK3beta pathway, influences BMAL1 stability and in vivo circadian gene expression in striatal neurons.These findings uncover a previously unknown mechanism of circadian clock control. The GSK3beta kinase phosphorylates BMAL1, an event that controls the stability of the protein and the amplitude of circadian oscillation. BMAL1 phosphorylation appears to be an important regulatory step in maintaining the robustness of the circadian clock

    Weekly gemcitabine plus Epirubicin as effective chemotherapy for advanced pancreatic cancer: a multicenter phase II study

    Get PDF
    The current role of chemotherapy in pancreatic carcinoma is limited, and progress in the treatment of this disease represents a significant challenge to medical oncology. The most promising drug under study is gemcitabine, a relatively new antimetabolite that represents an attractive candidate for combination chemotherapy because of its excellent side-effect profile and the absence of overlapping toxicities with other chemotherapeutic agents. Combined administration of gemcitabine and anthracyclines could result in the induction of DNA breaks that are not easily repaired by the cell's machinery, thus enhancing the apoptotic signals triggered by these lesions. Forty-four patients with locally advanced and/or metastatic pancreatic adenocarcinoma were enrolled in this multicenter study. Patients received Epirubicin 20 mg m−2 for 3 weeks followed by 1 week of rest (1 cycle) and gemcitabine 1000 mg m−2 after Epirubicin on the same day. All were assessable for toxicity and response, 11 patients responded to treatment with one complete response and 10 partial responses, for an overall response rate of 25%. Median survival was 10.9 months (range, 2–26 months). Therapy was well tolerated, with a low incidence of haematologic grade >2 toxicity. A total of 12 of 27 (44.4%) eligible patients attained a clinical benefit response. Our findings suggest that the gemcitabine-epirubicin schedule is active and well tolerated in patients with advanced pancreatic cancer

    Sponge Mass Mortalities in a Warming Mediterranean Sea: Are Cyanobacteria-Harboring Species Worse Off?

    Get PDF
    Mass mortality events are increasing dramatically in all coastal marine environments. Determining the underlying causes of mass mortality events has proven difficult in the past because of the lack of prior quantitative data on populations and environmental variables. Four-year surveys of two shallow-water sponge species, Ircinia fasciculata and Sarcotragus spinosulum, were carried out in the western Mediterranean Sea. These surveys provided evidence of two severe sponge die-offs (total mortality ranging from 80 to 95% of specimens) occurring in the summers of 2008 and 2009. These events primarily affected I. fasciculata, which hosts both phototrophic and heterotrophic microsymbionts, while they did not affect S. spinosulum, which harbors only heterotrophic bacteria. We observed a significant positive correlation between the percentage of injured I. fasciculata specimens and exposure time to elevated temperature conditions in all populations, suggesting a key role of temperature in triggering mortality events. A comparative ultrastructural study of injured and healthy I. fasciculata specimens showed that cyanobacteria disappeared from injured specimens, which suggests that cyanobacterial decay could be involved in I. fasciculata mortality. A laboratory experiment confirmed that the cyanobacteria harbored by I. fasciculata displayed a significant reduction in photosynthetic efficiency in the highest temperature treatment. The sponge disease reported here led to a severe decrease in the abundance of the surveyed populations. It represents one of the most dramatic mass mortality events to date in the Mediterranean Sea

    An investigation into aripiprazole's partial D(2) agonist effects within the dorsolateral prefrontal cortex during working memory in healthy volunteers

    Get PDF
    Rationale: Working memory impairments in schizophrenia have been attributed to dysfunction of the dorsolateral prefrontal cortex (DLPFC) which in turn may be due to low DLPFC dopamine innervation. Conventional antipsychotic drugs block DLPFC D2 receptors, and this may lead to further dysfunction and working memory impairments. Aripiprazole is a D2 receptor partial agonist hypothesised to enhance PFC dopamine functioning, possibly improving working memory. Objectives: We probed the implications of the partial D2 receptor agonist actions of aripiprazole within the DLPFC during working memory. Investigations were carried out in healthy volunteers to eliminate confounds of illness or medication status. Aripiprazole’s prefrontal actions were compared with the D2/5-HT2A blocker risperidone to separate aripiprazole’s unique prefrontal D2 agonist actions from its serotinergic and striatal D2 actions that it shares with risperidone. Method: A double-blind, placebo-controlled, parallel design was implemented. Participants received a single dose of either 5 mg aripiprazole, 1 mg risperidone or placebo before performing the n-back task whilst undergoing fMRI scanning. Results: Compared with placebo, the aripiprazole group demonstrated enhanced DLPFC activation associated with a trend for improved discriminability (d’) and speeded reaction times. In contrast to aripiprazole’s neural effects, the risperidone group demonstrated a trend for reduced DLPFC recruitment. Unexpectedly, the risperidone group demonstrated similar effects to aripiprazole on d’ and additionally had reduced errors of commission compared with placebo. Conclusion: Aripiprazole has unique DLPFC actions attributed to its prefrontal D2 agonist action. Risperidone’s serotinergic action that results in prefrontal dopamine release may have protected against any impairing effects of its prefrontal D2 blockade
    corecore