21 research outputs found

    Optical characterization of nano- and microcrystals of EuPO4 created by one-step synthesis of antimony-germanate-silicate glass modified by P2O5

    Get PDF
    Technology of active glass-ceramics (GC) is an important part of luminescent materials engineering. The classic method to obtain GC is based on annealing of parent glass in proper temperature and different time periods. Generally, only the bulk materials are investigated as a starting host for further applications. However, the effect of an additional heat-treatment process on emission and structural properties during GC processing is omitted. Here, we focus on the possibility of obtaining transparent glass-ceramic doped with europium ions directly with a melt-quenching method. The influence of phosphate concentration (up to 10 mol %) on the inversion symmetry of local environment of Eu3+ ions in antimony-germanate-silicate (SGS) glass has been investigated. The Stark splitting of luminescence spectra and the local asymmetry ratio estimated by relation of (5D0→7F2)/(5D0→7F1) transitions in fabricated glass confirms higher local symmetry around Eu3+ ions. Based on XRD and SEM/EDX measurements, the EuPO4 nano- and microcrystals with monoclinic geometry were determined. Therefore, in our experiment, we confirmed possibility of one-step approach to fabricate crystalline structures (glass-ceramic) in Eu-doped SGS glass without additional annealing process

    Spectroscopic properties of erbium-doped oxyfluoride phospho-tellurite glass and transparent glass-ceramic containing BaF2 nanocrystals

    Get PDF
    The ErF3-doped oxyfluoride phospho-tellurite glasses in the (40-x) TeO2-10P2O5-45 (BaF2-ZnF2) -5Na2O-xErF3 system (where x = 0.25, 0.50, 0.75, 1.00, and 1.25 mol%) have been prepared by the conventional melt-quenching method. The effect of erbium trifluoride addition on thermal, structure, and spectroscopic properties of oxyfluoride phospho-tellurite precursor glass was studied by differential scanning calorimetry (DSC), Fourier-transform infrared (FTIR), and Raman spectroscopy as well as emission measurements, respectively. The DSC curves were used to investigate characteristic temperatures and thermal stability of the precursor glass doped with varying content of ErF3. FTIR and Raman spectra were introduced to characterize the evolution of structure and phonon energy of the glasses. It was found that the addition of ErF3 up to 1.25 mol% into the chemical composition of phospho-tellurite precursor glass enhanced 2.7 µm emission and upconversion. By controlled heat-treatment process of the host glass doped with the highest content of erbium trifluoride (1.25 mol%), transparent erbium-doped phospho-tellurite glass-ceramic (GC) was obtained. X-ray diffraction analysis confirmed the presence of BaF2 nanocrystals with the average 16 nm diameter in a glass matrix. Moreover, MIR, NIR, and UC emissions of the glass-ceramic were discussed in detail and compared to the spectroscopic properties of the glass doped with 1.25 mol% of ErF3 (the base glass)

    Tm3+/Ho3+ co-doped germanate glass and double-clad optical fiber for broadband emission and lasing above 2 μm

    Get PDF
    In this paper, a 2 μm broadband emission under 796 nm laser diode excitation in low phonon energy GeO2-Ga2O3-BaO glass system is co-doped with 0.7Tm2O3/(0.07-0.7)Ho2O3 (mol%). The widest emission band (where the Tm3+ → Ho3+ energy transfer efficiency is 63%) was obtained for 0.7Tm2O3/0.15Ho2O3 co-doped glass from which a double-clad optical fiber was realized and investigated. Optimization of Tm3+/Ho3+ concentration enabled the acquisition of broadband amplified spontaneous emission (ASE) in double-clad optical fiber with a full width at half maximum (FWHM): 377 nm and 662 nm for 3 dB and 10 dB bandwidth, respectively. ASE spectrum is a result of the superposition of (Tm3+: 3H4 →Η3F4) 1.45 μm, (Tm3+: 3F4 → 3H6) 1.8 μm and (Ho3+:5I7 → 5I8) 2 μm emission bands. Hence, highly rare-earth co-doped germanate glass is characterized by a remarkably broader ASE spectrum than silica and tellurite fibers showed promising lasing properties for their further application in tunable and dual wavelength lasers

    Structure and luminescence properties of transparent germanate glassceramics co-doped with Ni2+/Er3+ for near-infrared optical fiber application

    Get PDF
    An investigation of the structural and luminescent properties of the transparent germanate glass-ceramics co-doped with Ni2+/Er3+ for near-infrared optical fiber applications was presented. Modification of germanate glasses with 10–20 ZnO (mol.%) was focused to propose the additional heat treatment process controlled at 650 C to obtain transparent glass-ceramics. The formation of 11 nm ZnGa2O4 nanocrystals was confirmed by the X-ray diffraction (XRD) method. It followed the glass network changes analyzed in detail (MIR—Mid Infrared spectroscopy) with an increasing heating time of precursor glass. The broadband 1000–1650 nm luminescence ( exc = 808 nm) was obtained as a result of Ni2+: 3T2(3F) ! 3A2(3F) octahedral Ni2+ ions and Er3+: 4I13/2 ! 4I15/2 radiative transitions and energy transfer from Ni2+ to Er3+ with the efficiency of 19%. Elaborated glass–nanocrystalline material is a very promising candidate for use as a core of broadband luminescence optical fibers

    Investigation of the TeO2/GeO2 Ratio on the Spectroscopic Properties of Eu3+-Doped Oxide Glasses for Optical Fiber Application

    Get PDF
    This study presented an analysis of the TeO2/GeO2 molar ratio in an oxide glass system. A family of melt-quenched glasses with the range of 0–35 mol% of GeO2 has been characterized by using DSC, Raman, MIR, refractive index, PLE, PL spectra, and time-resolved spectral measurements. The increase in the content of germanium oxide caused an increase in the transition temperature but a decrease in the refractive index. The photoluminescence spectra of europium ions were examined under the excitation of 465 nm, corresponding to 7F0 → 5D2 transition. The PSB (phonon sidebands) analysis was carried out to determine the phonon energy of the glass hosts. It was reported that the red (5D0 → 7F2) to orange (5D0 → 7F1) fluorescence intensity ratio for Eu3+ ions decreased from 4.49 (Te0Ge) to 3.33 (Te15Ge) and showed a constant increase from 4.58 (Te20Ge) to 4.88 (Te35Ge). These optical features were explained in structural studies, especially changes in the coordination of [4]Ge to [6]Ge. The most extended lifetime was reported for the Eu3+ doped glass with the highest content of GeO2. This glass was successfully used for the drawing of optical fiber

    Side-Detecting Optical Fiber Doped with Tb3+ for Ultraviolet Sensor Application

    No full text
    In the article a novel construction of a side-detecting luminescent optical fiber for an UV sensor application has been presented. In the fiber, structure phosphate glass doped with 0.5 mol% Tb3+ ions was used as a UV sensitive core/ribbon. The luminescence spectrum of glass and the optical fiber was measured under UV excitation using a deuterium lamp. It was found that large energy gap between upper (metastable) and lower (ground) levels of terbium ions incorporated in phosphate matrix leads to the effective emission at wavelengths of 489, 543, 586 and 621 nm, which correspond to 5D4 → 7FJ, (J = 3, 4, 5, 6) transitions respectively. Phosphate glass doped with optimal (the strongest VIS emission) concentration of Tb3+ (0.5 mol%) was used as the active core/ribbon in the construction of UV side-detecting optical fiber

    Nanocomposite Antimony-Germanate-Borate Glass Fibers Doped with Eu3+ Ions with Self-Assembling Silver Nanoparticles for Photonic Applications

    No full text
    Recently, nanocomposite glass materials embedded with silver particles and lanthanide ions have been widely investigated. The main interest is a surface plasmon resonance (SPR) phenomenon, which, as a result of nanometric particles’ interaction with external electromagnetic waves, has led to the enhancement of rare-earth luminescence. In most works, nanoparticles are created in photonic glass by annealing for various times; however, the most discussion of this field in the literature is dedicated to the practical use of plasmonic effect in optical fibers. In this paper, the effect of silver ions on the luminescent properties of europium ions in antimony-germanate-borate (SGB) glass fibers is presented. The glass was synthesized by a standard melt-quenching technique, and glass fiber was drowned at 580 °C. The analysis of Ag+ ions content, as well as heat-treatment (hT) time, show an increase of almost 36% in emissions at 616 nm for glass fiber co-doped with 0.1Ag+/0.2Eu3+ ions after a 2 h annealing process. In the experiment, the interaction mechanism was investigated in terms of localized SPR, in each step of the glass fiber fabrication process. Moreover, we demonstrate that the self-assembling of silver nanoparticles onto a glass fiber surface is possible only for fiber co-doped with 0.6Ag/0.2Eu ions. This non-conventional, bottom-up technique of thin film was analyzed by Scanning Electron Microscopy (SEM) measurements

    Side-Detecting Optical Fiber Doped with Tb3+ for Ultraviolet Sensor Application

    No full text
    In the article a novel construction of a side-detecting luminescent optical fiber for an UV sensor application has been presented. In the fiber, structure phosphate glass doped with 0.5 mol% Tb3+ ions was used as a UV sensitive core/ribbon. The luminescence spectrum of glass and the optical fiber was measured under UV excitation using a deuterium lamp. It was found that  large energy gap between upper (metastable) and lower (ground) levels of terbium ions incorporated in phosphate matrix leads to the effective emission at wavelengths of 489, 543, 586 and 621 nm, which correspond to 5D4 → 7FJ, (J = 3, 4, 5, 6) transitions respectively. Phosphate glass doped with optimal (the strongest VIS emission) concentration of Tb3+ (0.5 mol%) was used as the active core/ribbon in the construction of UV side-detecting optical fiber

    Study of Mid-Infrared Emission and Structural Properties of Heavy Metal Oxide Glass and Optical Fibre Co-Doped with Ho<sup>3+</sup>/Yb<sup>3+</sup> Ions

    No full text
    Bismuth-germanate glasses with low hydroxide content co-doped with Ho3+/Yb3+ ions have been investigated in terms of structural and spectroscopic properties. To reduce OH- ions content and improve transmittance value at the wavelength of 3.1 &#181;m, the glass synthesis has been carried out in low vacuum conditions (45&#8211;65 mBar). The composition of the host glass based on heavy metal oxides affects the maximum phonon energy (h&#969;max = 724 cm&#8722;1), which low value has a positive impact on the mid-infrared emission parameters. Emission band at the wavelength of 2.87 &#181;m was observed in glass co-doped with mol% 0.25 Ho2O3/0.75 Yb2O3 under 980 nm high power laser diode wavelength excitation. Lifetime measurements of the Yb3+:2F5/2 quantum level indicate efficient Yb3+ &#8594; Ho3+ energy transfer (&#951; = 61%). The developed active bismuth-germanate glass was used as the core of optical fibre operating in the mid-infrared region
    corecore