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Abstract: Technology of active glass-ceramics (GC) is an important part of luminescent materials
engineering. The classic method to obtain GC is based on annealing of parent glass in proper
temperature and different time periods. Generally, only the bulk materials are investigated as
a starting host for further applications. However, the effect of an additional heat-treatment process on
emission and structural properties during GC processing is omitted. Here, we focus on the possibility
of obtaining transparent glass-ceramic doped with europium ions directly with a melt-quenching
method. The influence of phosphate concentration (up to 10 mol %) on the inversion symmetry of
local environment of Eu3+ ions in antimony-germanate-silicate (SGS) glass has been investigated.
The Stark splitting of luminescence spectra and the local asymmetry ratio estimated by relation
of (5D0→7F2)/(5D0→7F1) transitions in fabricated glass confirms higher local symmetry around
Eu3+ ions. Based on XRD and SEM/EDX measurements, the EuPO4 nano- and microcrystals with
monoclinic geometry were determined. Therefore, in our experiment, we confirmed possibility of
one-step approach to fabricate crystalline structures (glass-ceramic) in Eu–doped SGS glass without
additional annealing process.

Keywords: glass-ceramics; europium oxide; luminescence properties; Stark splitting; EuPO4

nanocrystals; antimony-germanate-silicate glass

1. Introduction

In photonic material technology, transparent glass-ceramic (GC) with active nanocrystals is still
required [1–4]. Specific optical properties of active GC materials resulting from two-phase structure
(amorphous and crystalline) are found in the vicinity of lanthanide ions doped glassy host. The
main benefits of a crystalline environment surrounding the rare earth ions are the high absorption
and emission cross sections, lower phonon energy, and optimization of the ion–ion interaction [5].
The europium (Eu3+) ion is one of the interesting to analyze luminescence properties because: (i) it is
characterized by relatively high quantum efficiency since the energy gap between the 5D0 emitting level
and the underlying 7FJ multiplet is approx. 12,000 cm−1, which means that the non-radiative decay is
less likely to occur even in hosts with high phonon energies such as phosphate and silicate glasses
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(1100–1200 cm−1); (ii) the intensity ratio between electrical-dipole (ED: 5D0→7F2) to magnetic-dipole
(MD: 5D0→7F1) transitions can be used as a probe for site symmetry which is helpful to control
ceramization process; and (iii) the Eu3+ ions-doped optical material can be used as an efficient phosphor
for solid state light sources [6–10]. It is also well known that the intensities of emission bands of
europium ion in glasses depend on its concentration and glass composition [11–14]. In order to obtain
optimum emission characteristics for glass-ceramic applications, the influence of glass composition
as well as concentration dependence studies of Eu3+ ions are essential. To date, a lot of photonic
glasses after ceramization are presented in original papers [5,15–20]. Our idea is to modify thermally
stable antimony-germanate glass with phosphorous oxide. Based on our earlier investigations on
luminescent properties of antimony-germanate glasses doped with lanthanide ions we confirmed good
thermal stability of glassy matrix. We also observed that the combination of two various glass-forming
elements is particularly important in reduction of unfavorable non-radiative transitions between
energy levels of rare-earth ions [21–23]. Thus, in case of glass-ceramic fabrication we decided to use
P2O5 as a precursor of crystallization in antimony-germanate-silicate glasses doped with Eu2O3.

In the view of above, we demonstrated one-step method to obtain glass-ceramic material through
the modification of antimony-germanate-silicate glass with a small amount of P2O5. The local symmetry
in vicinity of Eu3+ ions and EuPO4 crystals creation were characterized by UV–vis spectrometry, X-ray
diffraction (XRD), Scanning Electron Microscopy (SEM), and Energy Dispersive X-ray Spectrometry
(EDS). It has been noticed, that the glass with 5 mol % of P2O5 shows band partition to emission
sub-wavelengths of Eu3+ ions, which is characteristic effect in glass-ceramic materials. Also, the partial
crystallization has been observed by naked eye directly after the melting process.

2. Results and Discussion

2.1. Analysis of Excitation and Emission Spectra

Figure 1 shows excitation spectra of europium ions in the fabricated glasses, which have been
monitored at the wavelength of 616 nm (5D0→7F2 transition). All glass samples are labeled due
to phosphate oxide concentration as follows: SGS05P, SGS1P, SGS3P, SGS5P, SGS7P, and SGS10P.
In analyzed spectral range (350–500 nm) five bands centered at the wavelengths 362 nm (7F0→5D4),
382 nm (7F0→5L7), 395 nm (7F0→5L6), 416 nm (7F0→5D3) and 464 nm (7F0→5D2) were observed.
The band at 395 nm is characterized by most intense transition in UV–vis spectral range, hence it is
suitable for the effective excitation of the Eu3+ ions by laser radiation at 394 nm. It worth to notice
that intensity of second important excitation band at 464 nm in glass sample doped with 0.5 mol %
P2O5 is more prominent. This band is called as the “hypersensitive transition” and strongly depends
on structural changes of glassy matrix [24]. In our experiment, the increase of phosphate content
in antimony-germanate glass leads to the strong reduction of “hypersensitive transition” intensity.
Thus, the intensity change of 7F0→5D2 transition observed in fabricated glasses confirms the structural
distortion of the glass network in the vicinity of Eu3+ ions.
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The luminescence spectra of fabricated antimony-germanate-silicate glasses doped with Eu3+

ions with different content of P2O5 under excitation by laser radiation with λexc = 394 nm were shown
in Figure 2. In the range of 525–725 nm five characteristic emission bands have been observed at the
wavelengths of 580, 594, 612, 653, and 703 nm originating from transitions of 5D0→7F0, 7F1,7F2, 7F3

and 7F4, respectively. All characteristics were scaled (integrated) to 5D0→7F1 transition due to their
having independent features.
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Figure 2. The luminescence spectra of SGSxP glasses doped with 0.5 mol % Eu2O3.

The changes in luminescence shape at 594 nm (5D0→7F1) and 616 nm (5D0→7F2) suggest
that incorporation of P2O5 into glass matrix leads to the local structure modification of fabricated
glasses. It worth to notice, that especially luminescence spectrum for SGS5P glass shows stark
splitting for 5D0→7F1 and 5D0→7F2 transitions. Based on the Eu3+ ions luminescent properties and
group-theoretical arguments it is possible to analyzed the structure of local environment in the vicinity
of the ion [25,26]. In case of 5D0→7F1 transition three emission peaks resulting from the total removal
of crystal field degeneracies were observed. The intensity of the 5D0→7F2 transition is higher than
intensity of 5D0→7F1 transition in all samples except SGS5P, where dominant is transition 5D0→7F1.
This result confirms that the local symmetry of Eu3+ ion is without an inversion center for SGS05P,
SGS1P, SGS3P, SGS7P, and SGS10P samples and with an inversion center for SGS5P sample [27].
Additionally, the 5D0→7F2 transition is a “hypersensitive transition” which means that it strongly
depends on the local symmetry and environmental effects in the surroundings of the Eu3+ ions [28].
Among the 5D0→7FJ transitions, the emission line at 594 nm (5D0→7F1) is a magnetic dipole transition
(MD), while the emission line at 616 nm (5D0→7F2) is an electric dipole transition (ED). The ratio
between integrated intensity of (5D0→7F2)/(5D0→7F1) transitions, gives a factor of the distortion
degree from the inversion symmetry of local environment of the europium ions. This value is less
than 1.0 for symmetric and is greater than 1.0 for non-centrosymmetric surroundings [14]. In our
experiment, the ED/MD transition ratio decreases rapidly from 4.24 to 0.92 in function of P2O5 (up to
5 mol %), then starts to increase to approxximately 3 in glasses with 7 mol % and 10 mol % of P2O5

(Table 1). The relatively lower values of the ED/MD ratio for SGS5P suggest incorporation of Eu3+

ions into more symmetric environment with less covalent character [27]. Therefore, the ED/MD value
is related to the enhancement in the symmetry of the ligand field around Eu3+ ions [29]. The variation
in the asymmetric ratio and stark splitting for 5D0→7F1, 5D0→7F2 and 5D0→7F4 transitions in SGS5P
sample may be due to the presence of the crystalline features [30]. Figure 3 presents the decay curves
for all SGS glass samples excited at 394 nm, and the lifetime values obtained by fitting the curves
with exponential functions are listed in Table 1. The luminescence decay curves of 5D0 energy level of
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Eu3+ in the glasses from SGS05P to SGS7P were fitted to the double-exponential fitting functions with
a short decay (τ1) and a long decay (τ2). However, the luminescence decay curves of 5D0 state of Eu3+

in the SGS10P glass was best fitted to a single-exponential fitting function, which indicated a 1.99 ms
lifetime. The luminescence intensity I(t) of the Eu3+ in glasses could be described by the sum of two
exponential decay components from

I(t) = A1exp
(
− t

τ1

)
+ A2exp

(
− t

τ2

)
(1)

where τ1 and τ2 were short- and long-decay components, respectively. Parameters A1 and A2 were
fitting constants. According to Equation (1), the average lifetime <τavg> was given by

〈τavg〉 =
A1τ2

1 + A2τ2
2

A1τ1 + A2τ2
(2)

where weight factors A1 and A2 were introduced. According to Equation (2), the average lifetimes of
5D0 energy level of Eu3+ in the fabricated antimony-germanate glasses were calculated and presented
in Table 1. It is well known that the luminescence of rare earth ions depended more or less efficiently
on the molecular structure of the host. The luminescence decay rate was the sum of the radiative
decay and multiphonon relaxation rates [31]. The non-radiative relaxation between various J states
might occur by interaction of the electronic levels of rare earth ions with suitable vibrational modes of
the environment [32]. Therefore, the double-exponential decay curves indicated that there were two
different surroundings of the europium ions in the fabricated glass: some in the glass and the others in
the nanocrystals. However, in the case of glasses with highest concentration of P2O5 (10 mol %) the
luminescence decay has single-exponential character, which is a rather unexpected result and needs
further structural investigations.
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Table 1. The ED/MD transition ratio, lifetimes (τ1 and τ2) and average lifetime <τavg> of 5D0 level of
Eu3+ ions.

Glass Sample ED/MD Ratio <τavg> [ms]

SGS05P 4.24 1.29
SGS1P 2.02 1.29
SGS3P 1.27 1.86
SGS5P 0.92 0.83
SGS7P 2.66 1.72

SGS10P 3.03 1.99
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As the P2O5 concentration increases from 0.5 to 7 mol %, there is a slight increase of average
5D0 lifetime from 1.29 to 1.86 ms. In fact, the variation of lifetime is not monotonic and the shortest
average lifetime of 5D0 level was obtained with the SGS5P glass sample. This effect could be related
to the division of the excitation energy between Stark’s sub-levels. It is also well known in literature
that the double-exponential decay indicates the energy transfer between Eu3+ ions by cross-relaxation
process. Mainly in glasses with high concentration of Eu3+ ions. However, an interesting effect is that
the SGS10P glass is characterized by longest lifetime (1.99 ms) than others glass samples. Based on
these results, we confirmed that in fabricated glasses double-exponential decay only depends on
concentration of P2O5.

2.2. X-ray Diffraction (XRD), Scaning Electron Microscopy (SEM), and Energy Dispersive X-ray
Spectrometry (EDS)

In order to confirm the presence of a crystalline phase or phases, the XRD measurements for
SGS5P (lowest asymmetry ratio) sample was performed in the range from 15 to 60 degrees of diffraction
angle (Figure 4). Broad halo effect between 2θ = 20◦–35◦ suggests the structural disorder and confirms
dominance the amorphous nature of the SGS glass. However, in the diffraction pattern, three weak
reflections peaks in the range of 2θ from 28 to 31 degrees were also observed. After the reference
analysis of peak positions calculated reflections are in good accordance with monoclinic EuPO4

crystalline phase (ICSD: 01-083-0656). From the peak width of the XRD pattern, the size of EuPO4

nanocrystals was estimated by the Scherrer formula

D =
λK

βcosθ
(3)

where D is the crystal size at the vertical direction, λ is the wavelength of the X-ray, θ is the angle of
diffraction, β is the full width at half maximum (FWHM) of the diffraction peak and the instrument
constant K = 0.9 [33]. The estimated average size of nanocrystals is about 30 nm. Figure 5 shows
scanning electron microscope (SEM) images of SGS3P and SGS5P samples. As can be seen, in both
SEM images there are visible crystals of a size range approx. 90–120 nm for the sample labeled as
SGS3P (Figure 5a) and a few microns for the SGS5P sample (Figure 5b).
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Figure 4. XRD patterns of SGS5P glass sample.

In the case of the SGS5P sample, the analysis of the chemical composition in two different areas
(EDS for amorphous—1; and for crystalline—2) shows that the microparticles observed in the SEM
image originate from crystals of europium phosphate (supplementary file—Figure S1).
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Figure 5. SEM image of SGS3P (a) and SGS5P (b) samples with approx. size of crystalline particles.

In the case of SGS3P sample, due to the nanometric size of the particles is not possible to obtain
an EDS spectrum separately for crystalline and the amorphous area. However, due to very similar
chemical composition of the analyzed glass samples, it can be assumed that EuPO4 crystals have been
also observed.

3. Materials and Methods

3.1. Glass Preparation

Antimony-germanate-silicate (SGS) glasses have been investigated in our earlier works due to good
thermal stability, which is required in the optical fiber fabrication process [22,23]. Here, we proposed
the modification of SGS glass by small amount of P2O5 from 0.5 mol % to 10 mol %. The glass with
molar composition 25Sb2O3–25Ge2O3–10Al2O3–5Na2O–(35-x)SiO2–xP2O5–0.5Eu2O3 was synthesized
by standard melt-quenching method. The Eu2O3 concentration was fixed on the level of 0.5mol % and
glasses are labeled as: SGS05P, SGS1P, SGS3P, SGS5P, SGS7P, and SGS10P. All the raw materials were
analytical grade reagents (99.99%). Europium ions were used as a local environment probe, to obtain
valuable information on the site symmetry of active ions in a fabricated host directly by luminescent
measurements. A homogenized set was placed in a platinum crucible and melted in an electric furnace
at 1450 ◦C for 60 min in oxygen atmosphere. Next, the glass melt was poured into a brass plate at the
room temperature (RT) and then annealed at 400 ◦C for 12 h to release the internal stress from the
quench. Next, glasses were cooled down to room temperature and polished carefully in order to meet
the requirements for optical measurements. After this, in a few glass samples, the partial-crystallization
(opaque) phenomenon and agglomeration of crystals were observed by naked eye.

3.2. Structural and Spectroscopic Analysis

The XRD patterns of fabricated glasses were measured in the range from 10◦ to 80◦ using an X'Pert
Pro diffractometer (PANalytical, Eindhoven, Netherlands). The Cu X-ray tube with Kα radiation was
used. The morphology of prepared samples was examined by FEI Company (Hillsboro, OR, USA)
Nova Nano SEM 200 scanning electron microscope with an attachment for chemical analysis with
energy dispersive X-ray spectroscopy (EDX, EDAX). The analyses were carried out in secondary
electron mode (SE). Prior to analyses, the samples were covered with carbon layer. The excitation
and luminescence spectra of the glasses in a range of 350–750 nm were measured using a JobinYvon
Fluoromax4 spectrophotometer (Horiba, Kyoto, Japan). A system PTI QuantaMaster QM40 coupled
with tunable pulsed optical parametric oscillator (OPO), pumped by a third harmonic of a Nd:YAG
laser (OpotekOpolette 355 LD, Carlsbad, CA, USA) was used for luminescence decay measurements.
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The laser system was equipped with a double 200 mm monochromator, a multimode UV–vis PMT
(R928) (Hamamatsu, Japan) and H10330B-75 detectors (Hamamatsu, Japan) controlled by a computer.
Luminescence decay curves were recorded and stored by a PTI ASOC-10 (USB-2500) oscilloscope with
an accuracy of ±1 µs.

4. Conclusions

As a result of our experiment we synthesized the antimony-germanate-silicate glass modified by
different content of P2O5. Incorporation of phosphate oxide into host enables to create monoclinic crystal
phase EuPO4 directly in melt-quenching process (without additional heat-treatment). Also, the effect
of partially crystallization leads to prominent Stark splitting of luminescence bands at 594 nm and
616 nm, which suggests that Eu3+ ions are surrounded by crystalline phase. According to SEM/EDS
measurements, the formation of europium phosphate crystals with nano- and micrometric size have
been also observed.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/10/9/1059/
s1, Figure S1: EDS spectra of SGS5P glass for amorphous (1) and crystalline (2) areas.
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