37 research outputs found

    Burkholderia cepacia complex taxon K : where to split?

    Get PDF
    The objective of the present study was to provide an updated classification for Burkholderia cepacia complex (Bcc) taxon K isolates. A representative set of 39 taxon K isolates were analyzed through multilocus sequence typing (MLST) and phylogenomic analyses. MLST analysis revealed the presence of at least six clusters of sequence types (STs) within taxon K, two of which contain the type strains of Burkholderia contaminans (ST-102) and Burkholderia lata (ST-101), and four corresponding to the previously defined taxa Other Bcc groups C, G, H and M. This clustering was largely supported by a phylogenomic tree which revealed three main clades. Isolates of B. contaminans and of Other Bcc groups C, G, and H represented a first clade which generally shared average nucleotide identity (ANI) and average digital DNA-DNA hybridization (dDDH) values at or above the 95–96% ANI and 70% dDDH thresholds for species delineation. A second clade consisted of Other Bcc group M bacteria and of four B. lata isolates and was supported by average ANI and dDDH values of 97.2 and 76.1% within this clade and average ANI and dDDH values of 94.5 and 57.2% toward the remaining B. lata isolates (including the type strain), which represented a third clade. We therefore concluded that isolates known as Other Bcc groups C, G, and H should be classified as B. contaminans, and propose a novel species, Burkholderia aenigmatica sp. nov., to accommodate Other Bcc M and B. lata ST-98, ST-103, and ST-119 isolates. Optimized MALDI-TOF MS databases for the identification of clinical Burkholderia isolates may provide correct species-level identification for some of these bacteria but would identify most of them as B. cepacia complex. MLST facilitates species-level identification of many taxon K strains but some may require comparative genomics for accurate species-level assignment. Finally, the inclusion of Other Bcc groups C, G, and H into B. contaminans affects the phenotype of this species minimally and the proposal to classify Other Bcc group M and B. lata ST-98, ST-103, and ST-119 strains as a novel Burkholderia species is supported by a distinctive phenotype, i.e., growth at 42°C and lysine decarboxylase activity

    Fosmidomycin Decreases Membrane Hopanoids and Potentiates the Effects of Colistin on Burkholderia multivorans Clinical Isolates

    Get PDF
    Burkholderia cepacia complex (Bcc) pulmonary infections in people living with cystic fibrosis (CF) are difficult to treat because of the extreme intrinsic resistance of most isolates to a broad range of antimicrobials. Fosmidomycin is an antibacterial and antiparasitic agent that disrupts the isoprenoid biosynthesis pathway, a precursor to hopanoid biosynthesis. Hopanoids are involved in membrane stability and contribute to polymyxin resistance in Bcc bacteria. Checkerboard MIC assays determined that although isolates of the Bcc species B. multivorans were highly resistant to treatment with fosmidomycin or colistin (polymyxin E), antimicrobial synergy was observed in certain isolates when the antimicrobials were used in combination. Treatment with fosmidomycin decreased the MIC of colistin for isolates as much as 64-fold to as low as 8 μg/ml, a concentration achievable with colistin inhalation therapy. A liquid chromatography-tandem mass spectrometry technique was developed for the accurate quantitative determination of underivatized hopanoids in total lipid extracts, and bacteriohopanetetrol cyclitol ether (BHT-CE) was found to be the dominant hopanoid made by B. multivorans. The amount of BHT-CE made was significantly reduced upon fosmidomycin treatment of the bacteria. Uptake assays with 1-N-phenylnaphthylamine were used to determine that dual treatment with fosmidomycin and colistin increases membrane permeability, while binding assays with boron-dipyrromethene-conjugated polymyxin B illustrated that the addition of fosmidomycin had no impact on polymyxin binding. This work indicates that pharmacological suppression of membrane hopanoids with fosmidomycin treatment can increase the susceptibility of certain clinical B. multivorans isolates to colistin, an agent currently in use to treat pulmonary infections in CF patients

    Burkholderia multivorans septicemia in a pediatric liver transplant patient

    Get PDF
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/148247/1/ajt15065_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/148247/2/ajt15065.pd

    Comparative genomics of Burkholderia singularis sp. nov., a low G+C content, free-living bacterium that defies taxonomic dissection of the genus Burkholderia

    Get PDF
    Four Burkholderia pseudomallei-like isolates of human clinical origin were examined by a polyphasic taxonomic approach that included comparative whole genome analyses. The results demonstrated that these isolates represent a rare and unusual, novel Burkholderia species for which we propose the name B. singularis. The type strain is LMG 28154(T) (=CCUG 65685(T)). Its genome sequence has an average mol% G+C content of 64.34%, which is considerably lower than that of other Burkholderia species. The reduced G+C content of strain LMG 28154(T) was characterized by a genome wide AT bias that was not due to reduced GC-biased gene conversion or reductive genome evolution, but might have been caused by an altered DNA base excision repair pathway. B. singularis can be differentiated from other Burkholderia species by multilocus sequence analysis, MALDI-TOF mass spectrometry and a distinctive biochemical profile that includes the absence of nitrate reduction, a mucoid appearance on Columbia sheep blood agar, and a slowly positive oxidase reaction. Comparisons with publicly available whole genome sequences demonstrated that strain TSV85, an Australian water isolate, also represents the same species and therefore, to date, B. singularis has been recovered from human or environmental samples on three continents

    Whole-Genome Sequencing of Three Clonal Clinical Isolates of B. cenocepacia from a Patient with Cystic Fibrosis.

    No full text
    Burkholderia cepacia complex bacteria are amongst the most feared of pathogens in cystic fibrosis (CF). The BCC comprises at least 20 distinct species that can cause chronic and unpredictable lung infections in CF. Historically the species B. cenocepacia has been the most prevalent in CF infections and has been associated in some centers with high rates of mortality. Modeling chronic infection by B. cenocepacia in the laboratory is challenging and no models exist which effectively recapitulate CF disease caused by BCC bacteria. Therefore our understanding of factors that contribute towards the morbidity and mortality caused by this organism is limited. In this study we used whole-genome sequencing to examine the evolution of 3 clonal clinical isolates of B. cenocepacia from a patient with cystic fibrosis. The first isolate was from the beginning of infection, and the second two almost 10 years later during the final year of the patients' life. These isolates also demonstrated phenotypic heterogeneity, with the first isolate displaying the mucoid phenotype (conferred by the overproduction of exopolysaccharide), while one of the later two was nonmucoid. In addition we also sequenced a nonmucoid derivative of the initial mucoid isolate, acquired in the laboratory by antibiotic pressure. Examination of sequence data revealed that the two late stage isolates shared 20 variant nucleotides in common compared to the early isolate. However, despite their isolation within 10 months of one another, there was also considerable variation between the late stage isolates, including 42 single nucleotide variants and three deletions. Additionally, no sequence differences were identified between the initial mucoid isolate and its laboratory acquired nonmucoid derivative, however transcript analysis indicated at least partial down regulation of genes involved in exopolysaccharide production. Our study examines the progression of B. cenocepacia throughout chronic infection, including establishment of sub-populations likely evolved from the original isolate, suggestive of parallel evolution. Additionally, the lack of sequence differences between two of the isolates with differing mucoid phenotypes suggests that other factors, such as gene regulation, come into play in establishing the mucoid phenotype

    Antibacterial Activity of a Natural Clay Mineral against <i>Burkholderia cepacia</i> Complex and Other Bacterial Pathogens Isolated from People with Cystic Fibrosis

    No full text
    There is an impending crisis in healthcare brought about by a new era of untreatable infections caused by bacteria resistant to all available antibiotics. Thus, there is an urgent need to identify novel antimicrobial agents to counter the continuing threat posed by formerly treatable infections. We previously reported that a natural mineral clay known as Kisameet clay (KC) is a potent inhibitor of the organisms responsible for acute infections. Chronic bacterial infections present another major challenge to treatment by antimicrobials, due to their prolonged nature, which results in repeated exposure to antibiotics and a constant selection for antimicrobial resistance. A prime example is bacteria belonging to the Burkholderia cepacia complex (Bcc), which particularly causes some of the most serious chronic lung infections in patients with cystic fibrosis (CF) associated with unpredictable clinical outcomes, poor prognosis, and high mortality rates. Eradication of these organisms from CF patients with limited effective antimicrobial options is a major challenge. Novel therapeutic approaches are urgently required. Here, we report the in vitro antibacterial activity of KC aqueous suspensions (1–10% w/v) and its aqueous extract (L100) against a collection of extensively and multi-drug resistant clinical isolates of Bcc, Pseudomonas aeruginosa, and Stenotrophomonas maltophilia isolated from patients with CF. These findings present a potential novel therapy for further investigation in the clinic

    Phylogenetic analysis of the concatenated MLST alleles for isolates of <i>B</i>. <i>cenocepacia recA</i> subgroup A representing common epidemic clones or isolates commonly used in laboratory studies of this species.

    No full text
    <p>A neighbor-joining tree was constructed using the Jukes-Cantor method for computing evolutionary distances. The branch lengths, indicated by the scale bar, are measured as the number of substitutions per site. <i>B</i>. <i>multivorans</i> type strain, LMG13010, was used as an outlier. Bootstrap values (from 1000 replicates) are shown next to the branches. * = isolates belonging to the ET-12 lineage. The tree was constructed using MEGA6 [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0143472#pone.0143472.ref038" target="_blank">38</a>].</p

    Genome sequences of isolates of <i>Burkholderia cenocepacia</i> C3921 (green), C8963 (blue) and C9343 (gold) compared to the reference genome of <i>B</i>. <i>cenocepacia</i> J2315 (purple), created using BRIG.

    No full text
    <p>Chromosomes 1 and 2 are drawn to scale. Black circles depict the relative sizes of chromosome 3 and the plasmid. To avoid implying absence where there was a lack of significance in the sequence, all low-confidence query sequences were called as their corresponding base pair in the J2315 sequence. Sequence coverage depth drawn with a maximum value cutoff of 150. The outer rings show the location of genomic islands described in J2315 [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0143472#pone.0143472.ref026" target="_blank">26</a>]. PS = putative or known polysaccharide synthesis genes. LPS = lipopolysaccharide biosynthesis genes. BCESM = <i>Burkholderia cepacia</i> epidemic strain marker.</p

    Isolates examined in this study.

    No full text
    <p>Four isolates were sequenced in this study: i) C3921 –the first isolate of <i>B</i>. <i>cenocepacia</i> from this patient, this isolate displays the mucoid phenotype; ii) C8963 –isolated 9 years and 3 months after the initial isolate, this isolate displays the nonmucoid phenotype; iii) C9343 –isolated 10 years after C3921 and 3 months prior to the death of this patient, this isolate was mucoid and iv) C3921-CTZ32G a nonmucoid variant of C3921 isolated in the laboratory following exposure to higher than MIC levels of the antibiotic ceftazidime [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0143472#pone.0143472.ref017" target="_blank">17</a>]. Scale is time in years from first isolate.</p
    corecore