32 research outputs found

    Azithromycin inhibits IL-1 secretion and non-canonical inflammasome activation

    Get PDF
    Deregulation of inflammasome activation was recently identified to be involved in the pathogenesis of various inflammatory diseases. Although macrolide antibiotics display well described immunomodulatory properties, presumably involved in their clinical effects, their impact on inflammasome activation has not been investigated. We compared the influence of macrolides on cytokine induction in human monocytes. The role of intracellular azithromycin- accumulation was examined by interference with Ca++-dependent uptake. We have also analysed the signalling cascades involved in inflammasome activation, and substantiated the findings in a murine sepsis model. Azithromycin, but not clarithromycin or roxithromycin, specifically inhibited IL-1α and IL-1β secretion upon LPS stimulation. Interference with Ca++-dependent uptake abolished the cytokine-modulatory effect, suggesting a role of intracellular azithromycin accumulation in the modulatory role of this macrolide. Azithromycin’s inhibiting effects were observed upon LPS, but not upon flagellin, stimulation. Consistent with this observation, we found impaired induction of the LPS-sensing caspase-4 whereas NF-κB signalling was unaffected. Furthermore, azithromycin specifically affected IL-1β levels in a murine endotoxin sepsis model. We provide the first evidence of a differential impact of macrolides on the inflammasome/IL-1β axis, which may be of relevance in inflammasome-driven diseases such as chronic obstructive pulmonary disease or asthma

    CMV Late Phase-Induced mTOR Activation Is Essential for Efficient Virus Replication in Polarized Human Macrophages : Antiviral Effects of mTOR Inhibitors

    Get PDF
    Human cytomegalovirus (CMV) remains one of the most important pathogens following solid-organ transplantation. Mounting evidence indicates that mammalian target of rapamycin (mTOR) inhibitors may decrease the incidence of CMV infection in solid- organ recipients. Here we aimed at elucidating the molecular mechanisms of this effect by employing a human CMV (HCMV) infection model in human macrophages, since myeloid cells are the principal in vivo targets of HCMV. We demonstrate a highly di- vergent host cell permissiveness for HCMV with opti- mal infection susceptibility in M2 but not M1 polarized macrophages. Employing an ultrahigh purified HCMV stock we observed rapamycin-independent viral entry and induction of IFN-b transcripts, but no proinflam- matory cytokines or mitogen-activated protein kinases and mTOR activation early after infection. However, in the late infection phase, sustained mTOR activa- tion was observed in HCMV-infected cells and was required for efficient viral protein synthesis including the viral late phase proteins pUL-44 and pp65. Accord- ingly, rapamycin strongly suppressed CMV replication 3 and 5 days postinfection in macrophages. In conclu- sion, these data indicate that mTOR is essential for virus replication during late phases of the viral cycle in myeloid cells and might explain the potent anti-CMV effects of mTOR inhibitors after organ transplantatio
    corecore