136 research outputs found

    The effect of mushroom culture filtrates on the inhibition of mycotoxins produced by Aspergillus flavus and Aspergillus carbonarius

    Get PDF
    Two of the mycotoxins of greatest agroeconomic significance are aflatoxin B-1 (AFB(1)), and ochratoxin A (OTA). It has been reported that extracts from some wood-decaying mushrooms, such as Lentinula edodes and Trametes versicolor showed the ability to inhibit AFB(1) or OTA biosynthesis. Therefore, in our study, a wide screening of 42 isolates of different ligninolytic mushrooms was assayed for their ability to inhibit the synthesis of OTA in Aspergillus carbonarius and AFB(1) in Aspergillus flavus, in order to find a metabolite that can simultaneously inhibit both mycotoxins. The results showed that four isolates produce metabolites able to inhibit the synthesis of OTA, and 11 isolates produced metabolites that inhibited AFB(1) by >50%. Two strains, the Trametes versicolor strain TV117 and the Schizophyllum commune strain S.C. Ailanto, produced metabolites able to significantly inhibit (>90%) the synthesis of both mycotoxins. Preliminary results suggest that the mechanism of efficacy of the S. commune rough and semipurified polysaccharides could be analogous to that found previously for Tramesan(R), by enhancing the antioxidant response in the target fungal cells. The overall results indicate that S. commune's polysaccharide(s) could be a potential agent(s) in biological control and/or a useful component of the integrated strategies able to control mycotoxin synthesis

    Tramesan elicits durum wheat defense against the septoria disease complex

    Get PDF
    The Septoria Leaf Blotch Complex (SLBC), caused by the two ascomycetes Zymoseptoria tritici and Parastagonospora nodorum, can reduce wheat global yearly yield by up to 50%. In the last decade, SLBC incidence has increased in Italy; notably, durum wheat has proven to be more susceptible than common wheat. Field fungicide treatment can efficiently control these pathogens, but it leads to the emergence of resistant strains and adversely affects human and animal health and the environment. Our previous studies indicated that active compounds produced by Trametes versicolor can restrict the growth of mycotoxigenic fungi and the biosynthesis of their secondary metabolites (e.g., mycotoxins). Specifically, we identified Tramesan: a 23 kDa α-heteropolysaccharide secreted by T. versicolor that acts as a pro-antioxidant molecule in animal cells, fungi, and plants. Foliar-spray of Tramesan (3.3 μM) on SLBC-susceptible durum wheat cultivars, before inoculation of causal agents of Stagonospora Nodorum Blotch (SNB) and Septoria Tritici Blotch (STB), significantly decreased disease incidence both in controlled conditions (SNB: –99%, STB: –75%) and field assays (SNB: –25%, STB: –30%). We conducted these tests were conducted under controlled conditions as well as in field. We showed that Tramesan increased the levels of jasmonic acid (JA), a plant defense-related hormone. Tramesan also increased the early expression (24 hours after inoculation-hai) of plant defense genes such as PR4 for SNB infected plants, and RBOH, PR1, and PR9 for STB infected plants. These results suggest that Tramesan protects wheat by eliciting plant defenses, since it has no direct fungicidal activity. In field experiments, the yield of durum wheat plants treated with Tramesan was similar to that of healthy untreated plots. These results encourage the use of Tramesan to protect durum wheat against SLBC

    Aflatoxin B1 Degradation by Stenotrophomonas Maltophilia and Other Microbes Selected Using Coumarin Medium#

    Get PDF
    Aflatoxin B1 (AFB1) is one of the most harmful mycotoxins in animal production and food industry. A safe, effective and environmentally sound detoxification method is needed for controlling this toxin. In this study, 65 samples were screened from various sources with vast microbial populations using a newly developed medium containing coumarin as the sole carbon source. Twenty five single-colony bacterial isolates showing AFB1 reduction activity in a liquid culture medium were selected from the screen. Isolate 35-3, obtained from tapir feces and identified to be Stenotrophomonas maltophilia, reduced AFB1 by 82.5% after incubation in the liquid medium at 37 °C for 72 h. The culture supernatant of isolate 35-3 was able to degrade AFB1 effectively, whereas the viable cells and cell extracts were far less effective. Factors influencing AFB1 degradation by the culture supernatant were investigated. Activity was reduced to 60.8% and 63.5% at 20 °C and 30 °C, respectively, from 78.7% at 37 °C. The highest degradation rate was 84.8% at pH 8 and the lowest was only 14.3% at pH 4.0. Ions Mg2+ and Cu2+ were activators for AFB1 degradation, however ion Zn2+ was a strong inhibitor. Treatments with proteinase K, proteinase K plus SDS and heating significantly reduced or eradicated the degradation activity of the culture supernatant. The results indicated that the degradation of AFB1 by S. maltophilia 35-3 was enzymatic and could have a great potential in industrial applications

    In Vitro Efficacy of Myxococcus fulvus ANSM068 to Biotransform Aflatoxin B1

    Get PDF
    Aflatoxin B1 (AFB1) is commonly found in cereals and animal feeds and causes a significant threat to the food industry and animal production. Several microbial isolates with high AFB1 transformation ability have been identified in our previous studies. The aim of this research was to characterize one of those isolates, Myxococcus fulvus ANSM068, and to explore its biotransformation mechanism. The bacterial isolate of M. fulvus ANSM068, isolated from deer feces, was able to transform AFB1 by 80.7% in liquid VY/2 medium after incubation at 30 °C for 72 h. The supernatant of the bacterial culture was more effective in transforming AFB1 as compared to the cells alone and the cell extract. The transformation activity was significantly reduced and eradicated after the culture supernatant was treated with proteinase K, proteinase K plus SDS and heating. Culture conditions, including nitrogen source, initial pH and incubation temperature were evaluated for an optimal AFB1 transformation. Liquid chromatography mass spectrometry (LCMS) analyses showed that AFB1 was transformed to a structurally different compound. Infrared analysis (IR) indicated that the lactone ring on the AFB1 molecule was modified by the culture supernatant. Chromatographies on DEAE-Ion exchange and Sephadex-Molecular sieve and SDS-PAGE electrophoresis were used to determine active components from the culture supernatant, indicating that enzyme(s) were responsible for the AFB1 biotransformation. This is the first report on AFB1 transformation by a strain of myxobacteria through enzymatic reaction(s)

    Digital Audio Forensics Fundamentals

    No full text

    The State of the World's Animal Genetic Resources for Food and Agriculture. Section C: Conservation Programmes

    No full text

    Oligosaccharides derived from tramesan: Their structure and activity on mycotoxin inhibition in aspergillus flavus and Aspergillus carbonarius

    Get PDF
    Food and feed safety are of paramount relevance in everyday life. The awareness that different chemicals, e.g., those largely used in agriculture, could present both environmental prob-lems and health hazards, has led to a large limitation of their use. Chemicals were also the main tool in a control of fungal pathogens and their secondary metabolites, mycotoxins. There is a drive to develop more environmentally friendly, \u201cgreen\u201d, approaches to control mycotoxin contamination of foodstuffs. Different mushroom metabolites showed the potential to act as control agents against mycotoxin production. The use of a polysaccharide, Tramesan, extracted from the basidiomycete Trametes versicolor, for controlling biosynthesis of aflatoxin B1 and ochratoxin A, has been previously discussed. In this study, oligosaccharides obtained from Tramesan were evaluated. The purified exopolysaccharide of T. versicolor was partially hydrolyzed and separated by chromatography into fractions from disaccharides to heptasaccharides. Each fraction was individually tested for myco-toxin inhibition in A. flavus and A. carbonarius. Fragments smaller than seven units showed no sig-nificant effect on mycotoxin inhibition; heptasaccharides showed inhibitory activity of up to 90% in both fungi. These results indicated that these oligosaccharides could be used as natural alternatives to crop protection chemicals for controlling these two mycotoxins
    • …
    corecore