47 research outputs found

    Improving insect conservation management through insect monitoring and stakeholder involvement

    Get PDF
    In recent years, the decline of insect biodiversity and the imminent loss of provided ecosystem functions and services has received public attention and raised the demand for political action. The complex, multi-causal contributors to insect decline require a broad interdisciplinary and cross-sectoral approach that addresses ecological and social aspects to find sustainable solutions. The project Diversity of Insects in Nature protected Areas (DINA) assesses insect communities in 21 nature reserves in Germany, and considers interactions with plant diversity, pesticide exposure, spatial and climatic factors. The nature reserves border on agricultural land, to investigate impacts on insect diversity. Part of the project is to obtain scientific data from Malaise traps and their surroundings, while another part involves relevant stakeholders to identify opportunities and obstacles to insect diversity conservation. Our results indicate a positive association between insect richness and biomass. Insect richness was negatively related to the number of stationary pesticides (soil and vegetation), pesticides measured in ethanol, the amount of area in agricultural production, and precipitation. Our qualitative survey along with stakeholder interviews show that there is general support for insect conservation, while at the same time the stakeholders expressed the need for more information and data on insect biodiversity, as well as flexible policy options. We conclude that conservation management for insects in protected areas should consider a wider landscape. Local targets of conservation management will have to integrate different stakeholder perspectives. Scientifically informed stakeholder dialogues can mediate conflicts of interests, knowledge, and values to develop mutual conservation scenarios

    Emerging technologies revolutionise insect ecology and monitoring

    Get PDF
    Insects are the most diverse group of animals on Earth, but their small size and high diversity have always made them challenging to study. Recent technologi- cal advances have the potential to revolutionise insect ecology and monitoring. We describe the state of the art of four technologies (computer vision, acoustic monitoring, radar, and molecular methods), and assess their advantages, current limitations, and future potential. We discuss how these technologies can adhere to modern standards of data curation and transparency, their implications for citizen science, and their potential for integration among different monitoring programmes and technologies. We argue that they provide unprecedented possibilities for insect ecology and monitoring, but it will be important to foster international standards via collaborationpublishedVersio

    Can metabarcoding resolve intraspecific genetic diversity changes to environmental stressors? A test case using river macrozoobenthos

    No full text
    Genetic diversity is the most basal level of biodiversity and determines the evolutionary capacity of species to adapt to changing environments, yet it is typically neglected in routine biomonitoring and stressor impact assessment. For a comprehensive analysis of stressor impacts on genetic diversity, it is necessary to assess genetic variants simultaneously in many individuals and species. Such an assessment is not as straightforward and usually limited to one or few focal species. However, nowadays species diversity can be assessed by analysing thousands of individuals of a community simultaneously with DNA metabarcoding. Recent bioinformatic advances also allow for the extraction of exact sequence variants (ESVs or haplotypes) in addition to Operational Taxonomic Units (OTUs). By using this new capability, we here evaluated if the analysis of intraspecific mitochondrial diversity in addition to species diversity can provide insights into responses of stream macrozoobenthic communities to environmental stressors. For this purpose, we analysed macroinvertebrate bulk samples of three German river systems with different stressor levels using DNA metabarcoding. While OTU and haplotype number were negatively correlated with stressor impact, this association was not as clear when studying haplotype diversity across all taxa. However, stressor responses were found for sensitive EPT (Ephemeroptera, Plecoptera, Trichoptera) taxa and those exceedingly resistant to organic stress. An increase in haplotype number per OTU and haplotype diversity of sensitive taxa was observed with an increase in ecosystem quality and stability, while the opposite pattern was detected for pollution resistant taxa. However, this pattern was less prominent than expected based on the strong differences in stressor intensity between sites. To compare genetic diversity among communities in river systems, we focussed on OTUs, which were present in all systems. As OTU composition differed strongly between rivers, this led to the exclusion of a high number of OTUs, especially in diverse river systems of good quality, which potentially diminished the increase in intraspecific diversity. To better understand responses of intraspecific genetic diversity to environmental stressors, for example in river ecosystems, it would be important to increase OTU overlap between compared sites, e.g. by sampling a narrower stressor gradient, and to perform calibrated studies controlling for the number of individuals and their haplotypes. However, this pioneer study shows that the extraction of haplotypes from DNA metabarcoding datasets is a promising source of information to simultaneously assess intraspecific diversity changes in response to environmental impacts for a metacommunity

    Global change in above-belowground multitrophic grassland communities

    No full text
    Global change is transforming Earth’s ecological communities with severe consequences for the functions and services they provide. In temperate grasslands, home to a mesmerising diversity of invertebrates controlling multiple ecosystem processes and services, land-use intensification and climate change are two of the most important global-change drivers. While we know a lot about their independent effects on grassland biodiversity and ecosystem functioning, little is known about how these stressors interact. Moreover, most research on biodiversity change focuses on decreasing biomass or species richness, while a major aspect is commonly ignored – altered ecological interactions. This is problematic because these interactions represent and control many important ecosystem processes, such as predation, herbivory or decomposition. Networks of trophic interactions, so-called food webs, link the structure and functioning of ecological communities and unravel mechanistic relationships between environmental change, ecological communities and ecosystem multifunctionality – the ability of a system to simultaneously support multiple processes. Consequently, we need to study how ecological interactions and the food webs they comprise respond to environmental change and to multiple interacting global-change drivers. Fortunately, novel tools offer unprecedented opportunities in studying trophic interactions and their impact on ecosystem processes. In addition, we know far more about how global change impacts the aboveground world than its belowground counterpart. However, belowground communities are just as important for the overall functioning of terrestrial ecosystems. Thus, to comprehensively understand global-change impacts on temperate grasslands, we need to study above- and belowground multitrophic interactions and ecosystem processes together, also accounting for their interdependencies. Here, we propose to use the Global Change Experimental Facility (GCEF, Bad Lauchstädt, Germany) to study joint impacts of land-use intensity and climate change on above-belowground multitrophic interactions and ecosystem multifunctionality in a temperate grassland global-change experiment. We will combine novel approaches to assessing trophic interactions and basal-resource dependency with an innovative method to quantify energy flux through ecological interaction networks. We will disentangle separate and interactive effects of land use and climate change and unravel how global-change driven modifications in multitrophic interactions mechanistically translate into altered ecosystem processes and multifunctionality – above and below the ground. Combining a field-experimental approach with novel molecular and quantitative techniques will allow for a leap forward in our understanding of global-change impacts on temperate grasslands, which will be crucial to manage and conserve these important ecosystems

    Analyzing multiple stressor effects on EPT taxa in a mesocosm experiment with DNA metabarcoding

    No full text
    Multiple stressors diversely and often adversely affect stream ecosystems around the globe. Therefore, understanding multiple stressor effects on different organisms is essential for a better ecosystem understanding, an accurate water quality assessment and improved ecosystem management. However, while multiple stressor effects should be assessed at species level this taxonomic resolution is often not achieved e.g. for stream macroinvertebrates. Due to their high abundance and diversity, species-level identification is often not feasible with morphology‑based approaches. DNA metabarcoding represents an alternative approach for studying multiple stressor interactions at species level.In an outdoor experiment over 10,000 specimens from the insect orders Ephemeroptera, Plecoptera and Trichoptera (EPT), which are routinely used as bioindicators, and their responses to stressors were studied. In the experiment salinity, fine sediment deposition and flow velocity were manipulated in a full‑factorial design in 64 mesocosms with two microhabitats each (streambed and leaf litter), resulting in eight replicates per treatment. DNA metabarcoding revealed 122 EPT Operational Taxonomic Units (OTUs), from which the most abundant 27 alone showed 14 different response patterns to the applied stressors. The high taxonomic resolution achieved by DNA metabarcoding revealed species specific stressor responses that were hidden at a lower taxonomic resolution. As a prominent example, Rhithrogena semicolorata responded negatively to fine sediment deposition and flow velocity reduction, while Ecdyonurus torrentis (both Heptageniidae, Ephemeroptera) was insensitive to experimental manipulation, highlighting different stressor responses among species within the same family (Fig. 1, Beermann et al. 2020).Even for well-studied organisms such as EPT taxa, this study shows that DNA metabarcoding has the potential to depict response patterns at species or OTU level despite high specimen abundance. Consequently, DNA metabarcoding promises to be a rewarding method when investigating and assessing multiple stressor effects on stream water quality

    Abundance estimation with DNA metabarcoding – recent advancements for terrestrial arthropods

    No full text
    Biodiversity is declining at alarming rates worldwide and large-scale monitoring is urgently needed to understand changes and their drivers. While classical taxonomic identification of species is time and labour intensive, the combination with DNA-based methods could upscale monitoring activities to achieve larger spatial coverage and increased sampling effort. However, challenges remain for DNA-based methods when the number of individuals per species and/or biomass estimates are required. Several methodological advancements exist to improve the potential of DNA metabarcoding for abundance analysis, which however need further evaluation. Here, we discuss laboratory, as well as some bioinformatic adjustments to DNA metabarcoding workflows regarding their potential to achieve species abundance estimation from arthropod community samples. Our review includes pre-laboratory processing methods such as specimen photography, laboratory methods such as the use of spike-in DNA as an internal standard and bioinformatic advancements like correction factors. We conclude that specimen photography coupled with DNA metabarcoding currently promises the greatest potential to achieve estimates of the number of individuals per species and biomass estimates, but that approaches such as spike-ins and correction factors are promising methods to pursue further

    Screening for the ancient polar bear mitochondrial genome reveals low integration of mitochondrial pseudogenes (numts) in bears

    No full text
    Phylogenetic analyses of nuclear and mitochondrial genomes indicate that polar bears captured the brown bear mitochondrial genome 160,000 years ago, leading to an extinction of the original polar bear mitochondrial genome. However, mitochondrial DNA occasionally integrates into the nuclear genome, forming pseudogenes called numts (nuclear mitochondrial integrations). Screening the polar bear genome identified only 13 numts. Genomic analyses of two additional ursine bears and giant panda indicate that all except one of the discovered numts entered the bear lineage at least 14 million years ago. However, short read genome assemblies might lead to an under-representation of numts or other repetitive sequences. Our findings suggest low integration rates of numts in bears and a loss of the original polar bear mitochondrial genome
    corecore