110 research outputs found

    Comparison between different approaches to modeling shallow landslide susceptibility: a case history in Oltrepo Pavese, Northern Italy

    Get PDF
    Abstract. On the 27 and 28 April 2009, the area of Oltrepo Pavese in northern Italy was affected by a very intense rainfall event that caused a great number of shallow landslides. These instabilities occurred on slopes covered by vineyards or recently formed woodlands and caused damage to many roads and one human loss. Based on aerial photographs taken immediately after the event and field surveys, more than 1600 landslides were detected. After acquiring topographical data, geotechnical properties of the soils and land use, susceptibility analysis on a territorial scale was carried out. In particular, different physically based models were applied to two contiguous sites with the same geological context but different typologies and sizes of shallow landslides. This paper presents the comparison between the ex-post results obtained from the different approaches. On the basis of the observed landslide localizations, the accuracy of the different models was evaluated, and the significant results are highlighted

    Bi-Allelic Mutations in Zebrafish pank2 Gene Lead to Testicular Atrophy and Perturbed Behavior without Signs of Neurodegeneration

    Get PDF
    Coenzyme A (CoA) is an essential cofactor in all living organisms, being involved in a large number of chemical reactions. Sequence variations in pantothenate kinase 2 (PANK2), the first enzyme of CoA biosynthesis, are found in patients affected by Pantothenate Kinase Associated Neurodegeneration (PKAN), one of the most common forms of neurodegeneration, with brain iron accumulation. Knowledge about the biochemical and molecular features of this disorder has increased a lot in recent years. Nonetheless, the main culprit of the pathology is not well defined, and no treatment option is available yet. In order to contribute to the understanding of this disease and facilitate the search for therapies, we explored the potential of the zebrafish animal model and generated lines carrying biallelic mutations in the pank2 gene. The phenotypic characterization of pank2-mutant embryos revealed anomalies in the development of venous vascular structures and germ cells. Adult fish showed testicular atrophy and altered behavioral response in an anxiety test but no evident signs of neurodegeneration. The study suggests that selected cell and tissue types show a higher vulnerability to pank2 deficiency in zebrafish. Deciphering the biological basis of this phenomenon could provide relevant clues for better understanding and treating PKAN

    The survey and mapping of sand-boil landforms related to the Emilia 2012 earthquakes: preliminary results.

    Get PDF
    Sand boils, which are also known as sand blows or sand volcanoes, are among the most common superficial effects induced by high-magnitude earthquakes. These generally occur in or close to alluvial plains when a strong earthquake (M >5) strikes on a lens of saturated and unconsolidated sand deposits that are constrained between silt-clay layers, where the sediments are converted into a fluid suspension. The liquefaction phenomena requires the presence of saturated and uncompacted sand, and a groundwater table near the ground surface. This geological\u2013geomorphological setting is common and widespread for the Po Plain (Italy). The Po Plain (ca. 46,000 km2) represents 15% of the Italian territory. It hosts a population of about 20 million people (mean density of 450 people/km2) and many infrastructures. Thus, the Po Plain is an area of high vulnerability when considering the liquefaction potential in the case of a strong earthquake. Despite the potential, such phenomena are rarely observed in northern Italy, because strong earthquakes are not frequent in this region; e.g., historical data report soil liquefaction near Ferrara in 1570 (M 5.3) and in Argenta 1624 (M 5.5). In the Emilia quakes of May 20 and 29, 2012, the most widespread coseismic effects were soil liquefaction and ground cracks, which occurred over wide areas in the Provinces of Modena, Ferrara, Bologna, Reggio Emilia and Mantov

    The survey and mapping of sand-boil landforms related to the Emilia 2012 earthquakes: preliminary results

    Get PDF
    Sand boils, which are also known as sand blows or sand volcanoes, are among the most common superficial effects induced by high-magnitude earthquakes. These generally occur in or close to alluvial plains when a strong earthquake (M >5) strikes on a lens of saturated and unconsolidated sand deposits that are constrained between silt-clay layers [Ambraseys 1988, Carter and Seed 1988, Galli 2000, Tuttle 2001, Obermeier et al. 2005], where the sediments are converted into a fluid suspension. The liquefaction phenomena requires the presence of saturated and uncompacted sand, and a groundwater table near the ground surface. This geological– geomorphological setting is common and widespread for the Po Plain (Italy) [Castiglioni et al. 1997]. The Po Plain (ca. 46,000 km2) represents 15% of the Italian territory. It hosts a population of about 20 million people (mean density of 450 people/km2) and many infrastructures. Thus, the Po Plain is an area of high vulnerability when considering the liquefaction potential in the case of a strong earthquake. Despite the potential, such phenomena are rarely observed in northern Italy [Cavallin et al. 1977, Galli 2000], because strong earthquakes are not frequent in this region; e.g., historical data report soil liquefaction near Ferrara in 1570 (M 5.3) and in Argenta 1624 (M 5.5) [Prestininzi and Romeo 2000, Galli 2000]. In the Emilia quakes of May 20 and 29, 2012, the most widespread coseismic effects were soil liquefaction and ground cracks, which occurred over wide areas in the Provinces of Modena, Ferrara, Bologna, Reggio Emilia and Mantova (Figure 1). These were the causes of considerable damage to buildings and the infrastructure. The soil liquefaction and ground cracks were accompanied by sand boils, which are described in this report. The spatial distribution and geomorphological setting of sand boils and ground cracks are also described here. A detailed three-dimensional (3D) reconstruction of these features is also presented, which was carried out using terrestrial photogrammetry. Since archeological times, fluvial ridges, and in general sandy deposits on low plains have been the preferred sites for human infrastructure, colonial houses, roads, etc. Therefore, it is very important to understand how the local topography/ morphology interacts in the liquefaction processes. Numerous distinctive seismic landforms were generated by the May 2012 strong earthquakes (seven with M >5), and in particular, sand boils and ground fractures. The sand-boil landforms, also known as sand craters or sand volcanoes, are formed by low mounds of sand that have been extruded from fractures [Tuttle 2001]. The cone is a generally shortlived structure that naturally collapses, starting from the center holes that mark the water retreat back into the fracture. Sand boils also occurred along larger cracks (with decimetric lateral and vertical displacements). Here, the upper scarps block the formation of craters and allow the deposition of a sandy layer several centimeters thick (e.g. ca. 4 cm in the San Carlo crack), on the lower side of the steep slope. These landforms are highly vulnerable to erosion. After a few weeks, they are washed out by rain, destroyed by human activity, or masked by growing crops. Thus, ground surveys that investigate these events have to be carried out as soon as possible [Panizza et al. 1981]. In this report, we present preliminary results using methods to map the detailed micro-morphology of some representative liquefaction features (Figure 2) that normally disappear for the aforementioned reasons, or that are recorded only in qualitative terms

    The survey and mapping of sand-boil landforms related to the Emilia 2012 earthquakes: preliminary results.

    Get PDF
    Sand boils, which are also known as sand blows or sand volcanoes, are among the most common superficial effects induced by high-magnitude earthquakes. These generally occur in or close to alluvial plains when a strong earthquake (M >5) strikes on a lens of saturated and unconsolidated sand deposits that are constrained between silt-clay layers, where the sediments are converted into a fluid suspension. The liquefaction phenomena requires the presence of saturated and uncompacted sand, and a groundwater table near the ground surface. This geological–geomorphological setting is common and widespread for the Po Plain (Italy). The Po Plain (ca. 46,000 km2) represents 15% of the Italian territory. It hosts a population of about 20 million people (mean density of 450 people/km2) and many infrastructures. Thus, the Po Plain is an area of high vulnerability when considering the liquefaction potential in the case of a strong earthquake. Despite the potential, such phenomena are rarely observed in northern Italy, because strong earthquakes are not frequent in this region; e.g., historical data report soil liquefaction near Ferrara in 1570 (M 5.3) and in Argenta 1624 (M 5.5). In the Emilia quakes of May 20 and 29, 2012, the most widespread coseismic effects were soil liquefaction and ground cracks, which occurred over wide areas in the Provinces of Modena, Ferrara, Bologna, Reggio Emilia and Mantov

    The survey and mapping of sand-boil landformsrelated to the Emilia 2012 earthquakes: preliminary results

    Get PDF
    In this report, we present preliminary results using methods to map the detailed micro-morphology of some representative liquefaction features that normally disappear for the aforementioned reasons, or that are recorded only in qualitative terms. Field surveys and activities were conducted a few days after the May 20 and 29, 2012, mainshocks (M 5.9, M 5.8, respectively). The surveys were carried out using global position system (GPS) and reflex digital cameras. GPS acquisition (tracklog) was used to record the topographic positions of the features and to automatically geolocate/geotag the numerous digital photos acquired. The field data, geomorphological features, and sand-boil location were loaded into a geodatabase and mapped using geographic information systems (GIS). Photogrammetric surveys were carried out on several sand boils using digital reflex cameras with calibrated 20-mm fixed lenses. To build high resolution digital elevation models (DEMs), images were taken from multiple angles to cover the entire areas of the features of interest

    The D647N mutation of FGFR1 induces ligand-independent receptor activation

    Get PDF
    The activation loop (A-loop) of kinases, a key regulatory region, is recurrently mutated in several kinase proteins in cancer resulting in dysregulated kinase activity and response to kinase inhibitors. FGFR1 receptor tyrosine kinase represents an important oncogene and therapeutic target for solid and hematological tumors. Here we investigate the biochemical and molecular effects of D647N mutation lying in the A-loop of FGFR1.When expressed in normal and tumoral in vitro cell models, FGFR1D647N is phosphorylated also in the absence of ligands, and this is accompanied by the activation of intracellular signaling. The expression of FGFR1D647N significantly increases single and collective migration of cancer cells in vitro and in vivo, when compared to FGFR1WT. FGFR1D647N expression exacerbates the aggressiveness of cancer cells, increasing their invasiveness in vitro and augmenting their pro-angiogenic capacity in vivo.Remarkably, the D647N mutation significantly increases the sensitivity of FGFR1 to the ATP-competitive inhibitor Erdafitinib suggesting the possibility that this mutation could become a specific target for the development of new inhibitors. Although further efforts are warranted for an exhaustive description of the activation mechanisms, for the identification of more specific inhibitors and for confirming the clinical significance of mutated FGFR1D647N, overall our data demonstrate that the D647N substitution of FGFR1 is a novel pro-oncogenic activating mutation of the receptor that, when found in cancer patients, may anticipate good response to erdafitinib treatment

    Synapsin III Regulates Dopaminergic Neuron Development in Vertebrates

    Get PDF
    Attention deficit and hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by alterations in the mesocorticolimbic and nigrostriatal dopaminergic pathways. Polymorphisms in the Synapsin III (Syn III) gene can associate with ADHD onset and even affect the therapeutic response to the gold standard ADHD medication, methylphenidate (MPH), a monoamine transporter inhibitor whose efficacy appears related with the stimulation of brain-derived neurotrophic factor (BDNF). Interestingly, we previously showed that MPH can bind Syn III, which can regulate neuronal development. These observations suggest that Syn III polymorphism may impinge on ADHD onset and response to therapy by affecting BDNF-dependent dopaminergic neuron development. Here, by studying zebrafish embryos exposed to Syn III gene knock-down (KD), Syn III knock-out (ko) mice and human induced pluripotent stem cells (iPSCs)-derived neurons subjected to Syn III RNA interference, we found that Syn III governs the earliest stages of dopaminergic neurons development and that this function is conserved in vertebrates. We also observed that in mammals Syn III exerts this function acting upstream of brain-derived neurotrophic factor (BDNF)- and cAMP-dependent protein kinase 5 (Cdk5)-stimulated dendrite development. Collectively, these findings own significant implications for deciphering the biological basis of ADHD

    iPSC-derived neuronal models of PANK2-associated neurodegeneration reveal mitochondrial dysfunction contributing to early disease

    Get PDF
    Mutations in PANK2 lead to neurodegeneration with brain iron accumulation. PANK2 has a role in the biosynthesis of coenzyme A (CoA) from dietary vitamin B5, but the neuropathological mechanism and reasons for iron accumulation remain unknown. In this study, atypical patient-derived fibroblasts were reprogrammed into induced pluripotent stem cells (iPSCs) and subsequently differentiated into cortical neuronal cells for studying disease mechanisms in human neurons. We observed no changes in PANK2 expression between control and patient cells, but a reduction in protein levels was apparent in patient cells. CoA homeostasis and cellular iron handling were normal, mitochondrial function was affected; displaying activated NADH-related and inhibited FADH-related respiration, resulting in increased mitochondrial membrane potential. This led to increased reactive oxygen species generation and lipid peroxidation in patient-derived neurons. These data suggest that mitochondrial deficiency is an early feature of the disease process and can be explained by altered NADH/FADH substrate supply to oxidative phosphorylation. Intriguingly, iron chelation appeared to exacerbate the mitochondrial phenotype in both control and patient neuronal cells. This raises caution for the use iron chelation therapy in general when iron accumulation is absent
    • …
    corecore