66 research outputs found

    Mechanical Behavior of Shale Rock under Uniaxial Cyclic Loading and Unloading Condition

    Get PDF
    In order to investigate the mechanical behavior of shale rock under cyclic loading and unloading condition, two kinds of incremental cyclic loading tests were conducted. Based on the result of the short-term uniaxial incremental cyclic loading test, the permanent residual strain, modulus, and damage evolution were analyzed firstly. Results showed that the relationship between the residual strains and the cycle number can be expressed by an exponential function. The deformation modulus E50 and elastic modulus ES first increased and then decreased with the peak stress under the loading condition, and both of them increased approximately linearly with the peak stress under the unloading condition. On the basis of the energy dissipation, the damage variables showed an exponential increasing with the strain at peak stress. The creep behavior of the shale rock was also analyzed. Results showed that there are obvious instantaneous strain, decay creep, and steady creep under each stress level and the specimen appears the accelerated creep stage under the 4th stress of 51.16 MPa. Based on the characteristics of the Burgers creep model, a viscoelastic-plastic creep model was proposed through viscoplastic mechanics, which agrees very well with the experimental results and can better describe the creep behavior of shale rock better than the Burgers creep model. Results can provide some mechanics reference evidence for shale gas development

    Transferring speech-generic and depression-specific knowledge for Alzheimer's disease detection

    Full text link
    The detection of Alzheimer's disease (AD) from spontaneous speech has attracted increasing attention while the sparsity of training data remains an important issue. This paper handles the issue by knowledge transfer, specifically from both speech-generic and depression-specific knowledge. The paper first studies sequential knowledge transfer from generic foundation models pretrained on large amounts of speech and text data. A block-wise analysis is performed for AD diagnosis based on the representations extracted from different intermediate blocks of different foundation models. Apart from the knowledge from speech-generic representations, this paper also proposes to simultaneously transfer the knowledge from a speech depression detection task based on the high comorbidity rates of depression and AD. A parallel knowledge transfer framework is studied that jointly learns the information shared between these two tasks. Experimental results show that the proposed method improves AD and depression detection, and produces a state-of-the-art F1 score of 0.928 for AD diagnosis on the commonly used ADReSSo dataset.Comment: 8 pages, 4 figures. Accepted by ASRU 202

    Combination and Compression of Multiple Optical Pulses in Nonlinear Fibers with the Exponentially Decreasing Dispersion

    Get PDF
    ACKNOWLEDGMENT This work was supported by the National Natural Science Foundation of China (No. Project 61675008).Peer reviewedPostprin

    Mechanical Properties of Gas Storage Sandstone under Uniaxial Cyclic Loading and Unloading Condition

    Get PDF
    In order to study the mechanical properties and damage evolution of the gas storage surrounding rock under the periodic injection-production process, the uniaxial cyclic loading and unloading tests of sandstone were carried out by TFD-2000 microcomputer servo-controlled rock triaxial testing machine. Results shown that the compressive strength of gas storage sandstone specimens were gradually decreases with increasing of the stress amplitude after 200 cycles. The stress-strain curve under uniaxial cyclic loading and unloading condition formed hysteresis loops, and the hysteresis loop presented sparse-dense-sparse when the stress amplitude was relative higher. The residual strains can be divided into three stages of decay deformation stage, stable deformation stage and accelerated deformation stage when the stress amplitude is 8~32 MPa, this phenomenon is very similar to the creep behavior of rocks. The energy evolution of sandstone under cyclic loading and unloading was analyzed and the damage evolution low of which was also discussed in detail, the damage variable defined by energy dissipative ratio accumulation can well reflect the damage development of sandstone under uniaxial cyclic loading and unloading. A nonlinear visco-plastic body was proposed by considering the accelerate stage of curves of the axial residual strains, and used the nonlinear visco-plastic body to replace the visco-plastic body of the traditional Nishihara model, a nonlinear viscoelastic-plastic model for cyclic loads was established and the applicability of the model is verified. The research results provide certain reference value for the construction and maintenance of gas storage

    Broadband NIR photon upconversion generates NIR persistent luminescence for bioimaging

    Full text link
    Upconversion persistent luminescence (UCPL) phosphors that can be directly charged by near-infrared (NIR) light have gained considerable attention due to their promising applications ranging from photonics to biomedicine. However, current lanthanide-based UCPL phosphors show small absorption cross-sections and low upconversion charging efficiency. The development of UCPL phosphors faces challenges of lacking flexible upconversion charging pathways and poor design flexibility. Herein, we discovered a new lattice defect-mediated broadband photon upconversion process and the accompanied NIR-to-NIR UCPL in Cr-doped zinc gallate nanoparticles. The zinc gallate nanoparticles can be directly activated by broadband NIR light in the 700-1000 nm range to produce persistent luminescence at about 700 nm, which is also readily enhanced by rationally tailoring the lattice defects in the phosphors. This proposed UCPL phosphors achieved a signal-to-background ratio of over 200 in bioimaging by efficiently avoiding interference from autofluorescence and light scattering. Our findings reported the lattice defect-mediated photon upconversion for the first time, which significantly expanded the horizons for the flexible design of NIR-to-NIR UCPL phosphors toward broad applications

    Surface passivation for highly active, selective, stable, and scalable CO2 electroreduction

    Get PDF
    Electrochemical conversion of CO2 to formic acid using Bismuth catalysts is one the most promising pathways for industrialization. However, it is still difficult to achieve high formic acid production at wide voltage intervals and industrial current densities because the Bi catalysts are often poisoned by oxygenated species. Herein, we report a Bi3S2 nanowire-ascorbic acid hybrid catalyst that simultaneously improves formic acid selectivity, activity, and stability at high applied voltages. Specifically, a more than 95% faraday efficiency was achieved for the formate formation over a wide potential range above 1.0 V and at ampere-level current densities. The observed excellent catalytic performance was attributable to a unique reconstruction mechanism to form more defective sites while the ascorbic acid layer further stabilized the defective sites by trapping the poisoning hydroxyl groups. When used in an all-solid-state reactor system, the newly developed catalyst achieved efficient production of pure formic acid over 120 hours at 50 mA cm–2 (200 mA cell current)
    corecore