143 research outputs found

    Strong Revenue (Non-)Monotonicity of Single-parameter Auctions

    Full text link
    Consider Myerson's optimal auction with respect to an inaccurate prior, e.g., estimated from data, which is an underestimation of the true value distribution. Can the auctioneer expect getting at least the optimal revenue w.r.t. the inaccurate prior since the true value distribution is larger? This so-called strong revenue monotonicity is known to be true for single-parameter auctions when the feasible allocations form a matroid. We find that strong revenue monotonicity fails to generalize beyond the matroid setting, and further show that auctions in the matroid setting are the only downward-closed auctions that satisfy strong revenue monotonicity. On the flip side, we recover an approximate version of strong revenue monotonicity that holds for all single-parameter auctions, even without downward-closedness. As applications, we get sample complexity upper bounds for single-parameter auctions under matroid constraints, downward-closed constraints, and general constraints. They improve the state-of-the-art upper bounds and are tight up to logarithmic factors

    Thermal ageing and its impact on charge trap density and breakdown strength in ldpe LDPE

    No full text
    Low-density polyethylene (LDPE) has been widely used as power cable insulation, because of its good electrical performance and stable chemical characteristics. However, in recent years, with the rise of large-capacity and long-distance HVDC transmission systems, the effect of space charge has a significant impact on the insulation selection and design. Furthermore, the change in the electrical performance of insulation after ageing is also required to be understood. It has been reported that ageing leads to an increase in charge trap density. The increase of trap density in LDPE makes the transport of charge carriers between traps easier. Consequently, the electrical breakdown strength will also be affected. This paper focuses on the LDPE films with different degrees of thermal ageing and studies its impact on charge trap density and change in electrical breakdown strength. The ageing degrees of sample were characterized using Fourier-Transform Infrared (FTIR). Space charge dynamics were measured using the pulsed electroacoustic (PEA) technique. In addition, electrical breakdown strength of the aged samples was measured and breakdown data were processed using the Weibull distribution. The change in characteristic breakdown strength is related to the change in charge trap density. The results suggest that the change in charge trap density of an insulating material can be used to characterize electrical performance of the material, therefore, the ageing status

    Contrastive Masked Autoencoders for Self-Supervised Video Hashing

    Full text link
    Self-Supervised Video Hashing (SSVH) models learn to generate short binary representations for videos without ground-truth supervision, facilitating large-scale video retrieval efficiency and attracting increasing research attention. The success of SSVH lies in the understanding of video content and the ability to capture the semantic relation among unlabeled videos. Typically, state-of-the-art SSVH methods consider these two points in a two-stage training pipeline, where they firstly train an auxiliary network by instance-wise mask-and-predict tasks and secondly train a hashing model to preserve the pseudo-neighborhood structure transferred from the auxiliary network. This consecutive training strategy is inflexible and also unnecessary. In this paper, we propose a simple yet effective one-stage SSVH method called ConMH, which incorporates video semantic information and video similarity relationship understanding in a single stage. To capture video semantic information for better hashing learning, we adopt an encoder-decoder structure to reconstruct the video from its temporal-masked frames. Particularly, we find that a higher masking ratio helps video understanding. Besides, we fully exploit the similarity relationship between videos by maximizing agreement between two augmented views of a video, which contributes to more discriminative and robust hash codes. Extensive experiments on three large-scale video datasets (i.e., FCVID, ActivityNet and YFCC) indicate that ConMH achieves state-of-the-art results. Code is available at https://github.com/huangmozhi9527/ConMH.Comment: This work is accepted by the AAAI 2023. 9 pages, 6 figures, 6 table

    Learning Transferable Spatiotemporal Representations from Natural Script Knowledge

    Full text link
    Pre-training on large-scale video data has become a common recipe for learning transferable spatiotemporal representations in recent years. Despite some progress, existing methods are mostly limited to highly curated datasets (e.g., K400) and exhibit unsatisfactory out-of-the-box representations. We argue that it is due to the fact that they only capture pixel-level knowledge rather than spatiotemporal commonsense, which is far away from cognition-level video understanding. Inspired by the great success of image-text pre-training (e.g., CLIP), we take the first step to exploit language semantics to boost transferable spatiotemporal representation learning. We introduce a new pretext task, Turning to Video for Transcript Sorting (TVTS), which sorts shuffled ASR scripts by attending to learned video representations. We do not rely on descriptive captions and learn purely from video, i.e., leveraging the natural transcribed speech knowledge to provide noisy but useful semantics over time. Furthermore, rather than the simple concept learning in vision-caption contrast, we encourage cognition-level temporal commonsense reasoning via narrative reorganization. The advantages enable our model to contextualize what is happening like human beings and seamlessly apply to large-scale uncurated video data in the real world. Note that our method differs from ones designed for video-text alignment (e.g., Frozen) and multimodal representation learning (e.g., Merlot). Our method demonstrates strong out-of-the-box spatiotemporal representations on diverse video benchmarks, e.g., +13.6% gains over VideoMAE on SSV2 via linear probing
    corecore