284 research outputs found

    'Correction:' Serum transforming growth factor beta-1 (TGF-beta-1) levels in diabetic patients are not associated with pre-existent coronary artery disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The association between TGF-β1 levels and long-term major adverse cardiovascular events (MACE) in patients with coronary artery disease (CAD) is controversial. No study specifically addressed patients with CAD and diabetes mellitus (DM). The association between TGF-β1 levels and long-term major adverse cardiovascular events (MACE) in patients with coronary artery disease (CAD) is controversial. No study specifically addressed patients with CAD and diabetes mellitus (DM).</p> <p>Methods</p> <p>Patients (n = 135, 30–80 years) referred for coronary angiography were submitted to clinical and laboratory evaluation, and the coronary angiograms were evaluated by two operators blinded to clinical characteristics. CAD was defined as the presence of a 70% stenosis in one major coronary artery, and DM was characterized as a fasting glycemia > 126 mg/dl or known diabetics (personal history of diabetes or previous use of anti-hyperglycemic drugs or insulin). Based on these criteria, study patients were classified into four groups: no DM and no CAD (controls, C n = 61), DM without CAD (D n = 23), CAD without DM (C-CAD n = 28), and CAD with DM (D-CAD n = 23). Baseline differences between the 4 groups were evaluated by the χ<sup>2 </sup>test for trend (categorical variables) and by ANOVA (continuous variables, post-hoc Tukey). Patients were then followed-up during two years for the occurrence of MACE (cardiac death, stroke, myocardial infarction or myocardial revascularization). The association of candidate variables with the occurrence of 2-year MACE was assessed by univariate analysis.</p> <p>Results</p> <p>The mean age was 58.2 ± 0.9 years, and 51% were men. Patients with CAD had a higher mean age (p = 0.011) and a higher percentage were male (p = 0.040). There were no significant baseline differences between the 4 groups regarding hypertension, smoking status, blood pressure levels, lipid levels or inflammatory markers. TGF-β1 was similar between patients with or without CAD or DM (35.1 ×/÷ 1.3, 33.6 ×/÷ 1.6, 33.9 ×/÷ 1.4 and 31.8 ×/÷ 1.4 ng/ml in C, D, C-CAD and D-CAD, respectively, p = 0.547). In the 2-year follow-ip, independent predictors of 2-year MACE were age (p = 0.007), C-reactive protein (p = 0.048) and systolic blood pressure (p = 0.008), but not TGF-β1.</p> <p>Conclusion</p> <p>Serum TGF-β1 was not associated with CAD or MACE occurrence in patients with or without DM.</p

    Oral Administration of GW788388, an Inhibitor of Transforming Growth Factor Beta Signaling, Prevents Heart Fibrosis in Chagas Disease

    Get PDF
    Cardiac damage and dysfunction are prominent features in patients with chronic Chagas disease, which is caused by infection with the protozoan parasite Trypanosoma cruzi (T. cruzi) and affects 10–12 million individuals in South and Central America. Our group previously reported that transforming growth factor beta (TGFß) is implicated in several regulatory aspects of T. cruzi invasion and growth and in host tissue fibrosis. In the present work, we evaluated the therapeutic action of an oral inhibitor of TGFß signaling (GW788388) administered during the acute phase of experimental Chagas disease. GW788388 treatment significantly reduced mortality and decreased parasitemia. Electrocardiography showed that GW788388 treatment was effective in protecting the cardiac conduction system, preserving gap junction plaque distribution and avoiding the development of cardiac fibrosis. Inhibition of TGFß signaling in vivo appears to potently decrease T. cruzi infection and to prevent heart damage in a preclinical mouse model. This suggests that this class of molecules may represent a new therapeutic tool for acute and chronic Chagas disease that warrants further pre-clinical exploration. Administration of TGFß inhibitors during chronic infection in mouse models should be further evaluated, and future clinical trials should be envisaged

    Mechanisms and consequences of TGF-ß overexpression by podocytes in progressive podocyte disease

    Get PDF
    In patients with progressive podocyte disease, such as focal segmental glomerulosclerosis (FSGS) and membranous nephropathy, upregulation of transforming growth factor-ß (TGF-ß) is observed in podocytes. Mechanical pressure or biomechanical strain in podocytopathies may cause overexpression of TGF-ß and angiotensin II (Ang II). Oxidative stress induced by Ang II may activate the latent TGF-ß, which then activates Smads and Ras/extracellular signal-regulated kinase (ERK) signaling pathways in podocytes. Enhanced TGF-ß activity in podocytes may lead to thickening of the glomerular basement membrane (GBM) by overproduction of GBM proteins and impaired GBM degradation in podocyte disease. It may also lead to podocyte apoptosis and detachment from the GBM, and epithelial-mesenchymal transition (EMT) of podocytes, initiating the development of glomerulosclerosis. Furthermore, activated TGF-ß/Smad signaling by podocytes may induce connective tissue growth factor and vascular endothelial growth factor overexpression, which could act as a paracrine effector mechanism on mesangial cells to stimulate mesangial matrix synthesis. In proliferative podocytopathies, such as cellular or collapsing FSGS, TGF-ß-induced ERK activation may play a role in podocyte proliferation, possibly via TGF-ß-induced EMT of podocytes. Collectively, these data bring new mechanistic insights into our understanding of the TGF-ß overexpression by podocytes in progressive podocyte disease

    Gene Expression Programs of Mouse Endothelial Cells in Kidney Development and Disease

    Get PDF
    Endothelial cells are remarkably heterogeneous in both morphology and function, and they play critical roles in the formation of multiple organ systems. In addition endothelial cell dysfunction can contribute to disease processes, including diabetic nephropathy, which is a leading cause of end stage renal disease. In this report we define the comprehensive gene expression programs of multiple types of kidney endothelial cells, and analyze the differences that distinguish them. Endothelial cells were purified from Tie2-GFP mice by cell dissociation and fluorescent activated cell sorting. Microarrays were then used to provide a global, quantitative and sensitive measure of gene expression levels. We examined renal endothelial cells from the embryo and from the adult glomerulus, cortex and medulla compartments, as well as the glomerular endothelial cells of the db/db mutant mouse, which represents a model for human diabetic nephropathy. The results identified the growth factors, receptors and transcription factors expressed by these multiple endothelial cell types. Biological processes and molecular pathways were characterized in exquisite detail. Cell type specific gene expression patterns were defined, finding novel molecular markers and providing a better understanding of compartmental distinctions. Further, analysis of enriched, evolutionarily conserved transcription factor binding sites in the promoters of co-activated genes begins to define the genetic regulatory network of renal endothelial cell formation. Finally, the gene expression differences associated with diabetic nephropathy were defined, providing a global view of both the pathogenic and protective pathways activated. These studies provide a rich resource to facilitate further investigations of endothelial cell functions in kidney development, adult compartments, and disease

    Geldanamycin Derivative Ameliorates High Fat Diet-Induced Renal Failure in Diabetes

    Get PDF
    Diabetic nephropathy is a serious complication of longstanding diabetes and its pathogenesis remains unclear. Oxidative stress may play a critical role in the pathogenesis and progression of diabetic nephropathy. Our previous studies have demonstrated that polyunsaturated fatty acids (PUFA) induce peroxynitrite generation in primary human kidney mesangial cells and heat shock protein 90β1 (hsp90β1) is indispensable for the PUFA action. Here we investigated the effects of high fat diet (HFD) on kidney function and structure of db/db mice, a widely used rodent model of type 2 diabetes. Our results indicated that HFD dramatically increased the 24 h-urine output and worsened albuminuria in db/db mice. Discontinuation of HFD reversed the exacerbated albuminuria but not the increased urine output. Prolonged HFD feeding resulted in early death of db/db mice, which was associated with oliguria and anuria. Treatment with the geldanamycin derivative, 17-(dimethylaminoehtylamino)-17-demethoxygeldanamycin (17-DMAG), an hsp90 inhibitor, preserved kidney function, and ameliorated glomerular and tubular damage by HFD. 17-DMAG also significantly extended survival of the animals and protected them from the high mortality associated with renal failure. The benefit effect of 17-DMAG on renal function and structure was associated with a decreased level of kidney nitrotyrosine and a diminished kidney mitochondrial Ca2+ efflux in HFD-fed db/db mice. These results suggest that hsp90β1 is a potential target for the treatment of nephropathy and renal failure in diabetes

    Connective tissue growth factor(CCN2), a pathogenic factor in diabetic nephropathy. What does it do? How does it do it?

    Get PDF
    Connective tissue growth factor (CTGF/CCN2) is a member of the CCN family of matricellular proteins. Its expression is induced by a number of factors including TGF-β. It has been associated with fibrosis in various tissues including the kidney. Diabetic nephropathy (DN) develops in about 30% of patients with diabetes and is characterized by thickening of renal basement membranes, fibrosis in the glomerulus (glomerulosclerosis), tubular atrophy and interstitial fibrosis, all of which compromise kidney function. This review examines changes in CTGF expression in the kidney in DN, the effects they have on glomerular mesangial and podocyte cells and the tubulointerstitium, and how these contribute to driving fibrotic changes in the disease. CTGF can bind to several other growth factors modifying their function. CTGF is also able to interact with receptors on cells, including integrins, tyrosine receptor kinase A (TrkA), low density lipoprotein receptor-related protein (LRP) and heparan sulphate proteoglycans. These interactions, the intracellular signalling pathways they activate, and the cellular responses evoked are reviewed. CTGF also induces the expression of chemokines which themselves have pharmacological actions on cells. CTGF may prompt some responses by acting through several different mechanisms, possibly simultaneously. For example, CTGF is often described as an effector of TGF-β. It can promote TGF-β signalling by binding directly to the growth factor, promoting its interaction with the TGF-β receptor; by triggering intracellular signalling on binding the TrkA receptor, which leads to the transcriptional repression of Smad7, an inhibitor of the TGF-β signalling pathway; and by binding to BMP-7 whose own signalling pathway opposing TGF-β is inhibited, leading to enhanced TGF-β signalling

    Getting ‘Smad' about obesity and diabetes

    Get PDF
    Recent findings on the role of transforming growth factor (TGF)-β/Smad3 signaling in the pathogenesis of obesity and type 2 diabetes have underscored its importance in metabolism and adiposity. Indeed, elevated TGF-β has been previously reported in human adipose tissue during morbid obesity and diabetic neuropathy. In this review, we discuss the pleiotropic effects of TGF-β/Smad3 signaling on metabolism and energy homeostasis, all of which has an important part in the etiology and progression of obesity-linked diabetes; these include adipocyte differentiation, white to brown fat phenotypic transition, glucose and lipid metabolism, pancreatic function, insulin signaling, adipocytokine secretion, inflammation and reactive oxygen species production. We summarize the recent in vivo findings on the role of TGF-β/Smad3 signaling in metabolism based on the studies using Smad3−/− mice. Based on the presence of a dual regulatory effect of Smad3 on peroxisome proliferator-activated receptor (PPAR)β/δ and PPARγ2 promoters, we propose a unifying mechanism by which this signaling pathway contributes to obesity and its associated diabetes. We also discuss how the inhibition of this signaling pathway has been implicated in the amelioration of many facets of metabolic syndromes, thereby offering novel therapeutic avenues for these metabolic conditions
    • …
    corecore