239 research outputs found

    Effect of resistive load on the performance of an organic Rankine cycle with a scroll expander

    Get PDF
    An experimental investigation is performed for an organic Rankine cycle system with different electrical resistive loads. The test rig is set up with a small scroll expander-generator unit, a boiler and a magnetically coupled pump. R134a is used as the working fluid in the system. The experimental results reveal that the resistive load coupled to the scroll expander-generator unit affects the expander performance and power output characteristics. It is found that an optimum pressure ratio exists for the maximum power output. The optimal pressure ratio of the expander decreases markedly as the resistive load gets higher. The optimum pressure ratio of the scroll expander is 3.6 at a rotation speed of 3450 r/min for a resistive load of 18.6 Ω. The maximum electrical power output is 564.5 W and corresponding isentropic and volumetric efficiencies are 78% and 83% respectively

    Link-Context Learning for Multimodal LLMs

    Full text link
    The ability to learn from context with novel concepts, and deliver appropriate responses are essential in human conversations. Despite current Multimodal Large Language Models (MLLMs) and Large Language Models (LLMs) being trained on mega-scale datasets, recognizing unseen images or understanding novel concepts in a training-free manner remains a challenge. In-Context Learning (ICL) explores training-free few-shot learning, where models are encouraged to ``learn to learn" from limited tasks and generalize to unseen tasks. In this work, we propose link-context learning (LCL), which emphasizes "reasoning from cause and effect" to augment the learning capabilities of MLLMs. LCL goes beyond traditional ICL by explicitly strengthening the causal relationship between the support set and the query set. By providing demonstrations with causal links, LCL guides the model to discern not only the analogy but also the underlying causal associations between data points, which empowers MLLMs to recognize unseen images and understand novel concepts more effectively. To facilitate the evaluation of this novel approach, we introduce the ISEKAI dataset, comprising exclusively of unseen generated image-label pairs designed for link-context learning. Extensive experiments show that our LCL-MLLM exhibits strong link-context learning capabilities to novel concepts over vanilla MLLMs. Code and data will be released at https://github.com/isekai-portal/Link-Context-Learning.Comment: 10 pages, 8 figure

    Towards Mitigating Hallucination in Large Language Models via Self-Reflection

    Full text link
    Large language models (LLMs) have shown promise for generative and knowledge-intensive tasks including question-answering (QA) tasks. However, the practical deployment still faces challenges, notably the issue of "hallucination", where models generate plausible-sounding but unfaithful or nonsensical information. This issue becomes particularly critical in the medical domain due to the uncommon professional concepts and potential social risks involved. This paper analyses the phenomenon of hallucination in medical generative QA systems using widely adopted LLMs and datasets. Our investigation centers on the identification and comprehension of common problematic answers, with a specific emphasis on hallucination. To tackle this challenge, we present an interactive self-reflection methodology that incorporates knowledge acquisition and answer generation. Through this feedback process, our approach steadily enhances the factuality, consistency, and entailment of the generated answers. Consequently, we harness the interactivity and multitasking ability of LLMs and produce progressively more precise and accurate answers. Experimental results on both automatic and human evaluation demonstrate the superiority of our approach in hallucination reduction compared to baselines.Comment: Accepted by the findings of EMNLP 202

    Stability and Hopf bifurcation of a ratio-dependent predator-prey model with time delay and stage structure

    Get PDF
    In this paper, a ratio-dependent predator-prey model described by Holling type II functional response with time delay and stage structure for the prey is investigated. By analyzing the corresponding characteristic equations, the local stability of the coexistence equilibrium of the model is discussed and the existence of Hopf bifurcations at the coexistence equilibrium is established. By using the persistence theory on infinite dimensional systems, it is proven that the system is permanent if the coexistence equilibrium exists. By introducing some new lemmas and the comparison theorem, sufficient conditions are obtained for the global stability of the coexistence equilibrium. Numerical simulations are carried out to illustrate the main results
    • …
    corecore