1,930 research outputs found

    RLZAP: Relative Lempel-Ziv with Adaptive Pointers

    Full text link
    Relative Lempel-Ziv (RLZ) is a popular algorithm for compressing databases of genomes from individuals of the same species when fast random access is desired. With Kuruppu et al.'s (SPIRE 2010) original implementation, a reference genome is selected and then the other genomes are greedily parsed into phrases exactly matching substrings of the reference. Deorowicz and Grabowski (Bioinformatics, 2011) pointed out that letting each phrase end with a mismatch character usually gives better compression because many of the differences between individuals' genomes are single-nucleotide substitutions. Ferrada et al. (SPIRE 2014) then pointed out that also using relative pointers and run-length compressing them usually gives even better compression. In this paper we generalize Ferrada et al.'s idea to handle well also short insertions, deletions and multi-character substitutions. We show experimentally that our generalization achieves better compression than Ferrada et al.'s implementation with comparable random-access times

    Exploring ecosystem markets for the delivery of public goods in the UK

    Get PDF
    Environmental restoration and conservation challenges go beyond what can be financed publicly. There are significant opportunities for private investment in the delivery of public goods, benefitting both commercial organisations whose business relies on ecosystem services, as well as landowners, land managers and the general public. Thus, public-private financing of natural capital improvement presents an opportunity to increase the availability of funding for payments for ecosystem services that provide environmental and societal benefits. Though public-private partnerships for the financing of ecosystem services is in its infancy in the UK. This new report explores the voluntary ecosystem services market in the UK. This is achieved by developing an understanding of how key actors (schemes, stakeholder engagement initiatives, trading platforms and supporting modelling tools) operate, and by identifying possible synergies, examples of good practice and challenges to implementation. Topics covered include, understanding how the identified actors account for the social distribution of ecosystem services, how values are attributed to ecosystem services, and the legal obligations linked to ventures’ operation

    A statistical method for revealing form-function relations in biological networks

    Get PDF
    Over the past decade, a number of researchers in systems biology have sought to relate the function of biological systems to their network-level descriptions -- lists of the most important players and the pairwise interactions between them. Both for large networks (in which statistical analysis is often framed in terms of the abundance of repeated small subgraphs) and for small networks which can be analyzed in greater detail (or even synthesized in vivo and subjected to experiment), revealing the relationship between the topology of small subgraphs and their biological function has been a central goal. We here seek to pose this revelation as a statistical task, illustrated using a particular setup which has been constructed experimentally and for which parameterized models of transcriptional regulation have been studied extensively. The question "how does function follow form" is here mathematized by identifying which topological attributes correlate with the diverse possible information-processing tasks which a transcriptional regulatory network can realize. The resulting method reveals one form-function relationship which had earlier been predicted based on analytic results, and reveals a second for which we can provide an analytic interpretation. Resulting source code is distributed via http://formfunction.sourceforge.net.Comment: To appear in Proc. Natl. Acad. Sci. USA. 17 pages, 9 figures, 2 table

    Dynamic Fluctuation Phenomena in Double Membrane Films

    Full text link
    Dynamics of double membrane films is investigated in the long-wavelength limit including the overdamped squeezing mode. We demonstrate that thermal fluctuations essentially modify the character of the mode due to its nonlinear coupling to the transversal shear hydrodynamic mode. The corresponding Green function acquires as a function of the frequency a cut along the imaginary semi-axis. Fluctuations lead to increasing the attenuation of the squeezing mode it becomes larger than the `bare' value.Comment: 7 pages, Revte

    On the Inability of Markov Models to Capture Criticality in Human Mobility

    Get PDF
    We examine the non-Markovian nature of human mobility by exposing the inability of Markov models to capture criticality in human mobility. In particular, the assumed Markovian nature of mobility was used to establish a theoretical upper bound on the predictability of human mobility (expressed as a minimum error probability limit), based on temporally correlated entropy. Since its inception, this bound has been widely used and empirically validated using Markov chains. We show that recurrent-neural architectures can achieve significantly higher predictability, surpassing this widely used upper bound. In order to explain this anomaly, we shed light on several underlying assumptions in previous research works that has resulted in this bias. By evaluating the mobility predictability on real-world datasets, we show that human mobility exhibits scale-invariant long-range correlations, bearing similarity to a power-law decay. This is in contrast to the initial assumption that human mobility follows an exponential decay. This assumption of exponential decay coupled with Lempel-Ziv compression in computing Fano's inequality has led to an inaccurate estimation of the predictability upper bound. We show that this approach inflates the entropy, consequently lowering the upper bound on human mobility predictability. We finally highlight that this approach tends to overlook long-range correlations in human mobility. This explains why recurrent-neural architectures that are designed to handle long-range structural correlations surpass the previously computed upper bound on mobility predictability
    • …
    corecore