129 research outputs found

    A Tool for Designing MnPASS Access Spacing

    Get PDF
    Dynamically priced High Occupancy Toll (HOT) lanes have been recently added to the traffic operations arsenal in an attempt to preserve infrastructure investment in the future by maintaining a control on demand. This study focuses on the operational and design features of HOT lanes. HOT lanes’ mobility and safety are contingent on the design of zones (“gates”) that drivers use to merge in or out of the facility. Existing methodologies for the design of access zones are limited to engineering judgment or studies that take into consideration undersized amount of observations. This project capitalized on the results of an earlier project that performed an assessment of safety and mobility on the HOT facilities in Minnesota highlighted the issues involved in either designs. The product of this project, the MnPASS Access Design application, provides a tool for traffic managers and planners to examine the conditions within an existing or prospective corridor and the distribution of shockwave lengths which are expected. From the distribution of shockwave lengths, decisions can be made regarding access restriction on the HOT lane to ensure that drivers do not attempt to make lane changes at locations prone to dangerous conditions. This tool provides support for the managers and planners by aggregating the entire behavior of the HOT lane within the corridor into a framework for simplified consideration

    Evaluation of the Effect of MnPASS Lane Design on Mobility and Safety

    Get PDF
    Dynamically priced High Occupancy Toll (HOT) lanes have been recently added to the traffic operations arsenal in an attempt to preserve infrastructure investment in the future by maintaining a control on demand. This study focuses on the operational and design features of HOT lanes. HOT lanes’ mobility and safety are contingent on the design of zones (“gates”) that drivers use to merge in or out of the facility. Existing methodologies for the design of access zones are limited to engineering judgment or studies that take into consideration undersized amount of observations. Case in point is the fact that the design philosophes between the two HOT facilities in Minnesota are diametrically opposed. Specifically, the I-394 freeway, the first dynamically priced HOT lane, was designed with a closed access philosophy, meaning that for the greater length of the roadway access to the HOT lane is restricted with only specific short-length sections where access is allowed. In contrast I-35W, the second HOT corridor, was designed with an open access philosophy where lane changes between the HOT and the GPLs are allowed everywhere except for a few specific locations. This contradiction generated questions as to effect each case has on safety and mobility. This study presents an assessment of safety and mobility on the two facilities as they operate today and highlights the issues present on either design. In addition, two design tools were developed, the first assisting in the optimal design of access zones based on traffic measurements, and the second allowing the assessment of the influence congested General Purpose Lanes can have on the mobility and safety of the HOT under different traffic conditions and utilization due to changes in pricing strategy

    Transgenic neuronal overexpression reveals that stringently regulated p23 expression is critical for coordinated movement in mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>p23 belongs to the highly conserved p24 family of type I transmembrane proteins, which participate in the bidirectional protein transport between the endoplasmic reticulum and Golgi apparatus. Mammalian p23 has been shown to interact with γ-secretase complex, and modulate secretory trafficking as well as intramembranous processing of amyloid precursor protein in cultured cells. Negative modulation of β-amyloid production by p23 in cultured cell lines suggested that elevation of p23 expression in neurons might mitigate cerebral amyloid burden.</p> <p>Results</p> <p>We generated several lines of transgenic mice expressing human p23 in neurons under the control of <it>Thy-1.2 </it>promoter. We found that even a 50% increase in p23 levels in the central nervous system of mice causes post-natal growth retardation, severe neurological problems characterized by tremors, seizure, ataxia, and uncoordinated movements, and premature death. The severity of the phenotype closely correlated with the level of p23 overexpression in multiple transgenic lines. While the number and general morphology of neurons in Hup23 mice appeared to be normal throughout the brain, abnormal non-Golgi p23 localization was observed in a subset of neurons with high transgene expression in brainstem. Moreover, detailed immunofluorescence analysis revealed marked proliferation of astrocytes, activation of microglia, and thinning of myelinated bundles in brainstem of Hup23 mice.</p> <p>Conclusions</p> <p>These results demonstrate that proper level of p23 expression is critical for neuronal function, and perturbing p23 function by overexpression initiates a cascade of cellular reactions in brainstem that leads to severe motor deficits and other neurological problems, which culminate in premature death. The neurological phenotype observed in Hup23 mice highlights significant adverse effects associated with manipulating neuronal expression of p23, a previously described negative modulator of γ-secretase activity and β-amyloid production. Moreover, our report has broader relevance to molecular mechanisms in several neurodegenerative diseases as it highlights the inherent vulnerability of the early secretory pathway mechanisms that ensure proteostasis in neurons.</p

    Zanamivir Conjugated to Poly-L-Glutamine is Much More Active Against Influenza Viruses in Mice and Ferrets Than the Drug Itself

    Get PDF
    Purpose: Previously, polymer-attached zanamivir had been found to inhibit influenza A viruses in vitro far better than did small-molecule zanamivir (1) itself. The aim of this study was to identify in vitro—using the plaque reduction assay—a highly potent 1-polymer conjugate, and subsequently test its antiviral efficacy in vivo. Methods: By examining the structure-activity relationship of 1-polymer conjugates in the plaque assay, we have determined that the most potent inhibitor against several representative influenza virus strains has a neutral high-molecular-weight backbone and a short alkyl linker. We have examined this optimal polymeric inhibitor for efficacy and immunogenicity in the mouse and ferret models of infection. Results: 1 attached to poly-L-glutamine is an effective therapeutic for established influenza infection in ferrets, reducing viral titers up to 30-fold for 6 days. There is also up to a 190-fold reduction in viral load when the drug is used as a combined prophylactic/therapeutic in mice. Additionally, we see no evidence that the drug conjugate stimulates an immune response in mice upon repeat administration. Conclusions: 1 attached to a neutral high-molecular-weight backbone through a short alkyl linker drastically reduced both in vitro and in vivo titers compared to those observed with 1 itself. Thus, further development of this polymeric zanamivir for the mitigation of influenza infection seems warranted.National Institutes of Health (U.S.) (Grant U01-AI074443

    Properly Folded Bacterially Expressed H1N1 Hemagglutinin Globular Head and Ectodomain Vaccines Protect Ferrets against H1N1 Pandemic Influenza Virus

    Get PDF
    Background: In the face of impending influenza pandemic, a rapid vaccine production and mass vaccination is the most effective approach to prevent the large scale mortality and morbidity that was associated with the 1918 "Spanish Flu". The traditional process of influenza vaccine production in eggs is time consuming and may not meet the demands of rapid global vaccination required to curtail influenza pandemic. Methodology/Principal Findings: Recombinant technology can be used to express the hemagglutinin (HA) of the emerging new influenza strain in a variety of systems including mammalian, insect, and bacterial cells. In this study, two forms of HA proteins derived from the currently circulating novel H1N1 A/California/07/2009 virus, HA1 (1-330) and HA (1- 480), were expressed and purified from E. coli under controlled redox refolding conditions that favoured proper protein folding. However, only the recombinant HA1 (1-330) protein formed oligomers, including functional trimers that bound receptor and caused agglutination of human red blood cells. These proteins were used to vaccinate ferrets prior to challenge with the A/California/07/2009 virus. Both proteins induced neutralizing antibodies, and reduced viral loads in nasal washes. However, the HA1 (1-330) protein that had higher content of multimeric forms provided better protection from fever and weight loss at a lower vaccine dose compared with HA (1-480). Protein yield for the HA1 (1-330) ranged around 40 mg/Liter, while the HA (1-480) yield was 0.4-0.8 mg/Liter. Conclusions/Significance: This is the first study that describes production in bacterial system of properly folded functional globular HA1 domain trimers, lacking the HA2 transmembrane protein, that elicit potent neutralizing antibody responses following vaccination and protect ferrets from in vivo challenge. The combination of bacterial expression system with established quality control methods could provide a mechanism for rapid large scale production of influenza vaccines in the face of influenza pandemic threat

    Reducing Alaska Native paediatric oral health disparities: a systematic review of oral health interventions and a case study on multilevel strategies to reduce sugar-sweetened beverage intake

    Get PDF
    Background. Tooth decay is the most common paediatric disease and there is a serious paediatric tooth decay epidemic in Alaska Native communities. When untreated, tooth decay can lead to pain, infection, systemic health problems, hospitalisations and in rare cases death, as well as school absenteeism, poor grades and low quality-of-life. The extent to which population-based oral health interventions have been conducted in Alaska Native paediatric populations is unknown. Objective. To conduct a systematic review of oral health interventions aimed at Alaska Native children below age 18 and to present a case study and conceptual model on multilevel intervention strategies aimed at reducing sugar-sweetened beverage (SSB) intake among Alaska Native children. Design. Based on the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) Statement, the terms &#x201C;Alaska Native&#x201D;, &#x201C;children&#x201D; and &#x201C;oral health&#x201D; were used to search Medline, Embase, Web of Science, GoogleScholar and health foundation websites (1970&#x2013;2012) for relevant clinical trials and evaluation studies. Results. Eighty-five studies were found in Medline, Embase and Web of Science databases and there were 663 hits in GoogleScholar. A total of 9 publications were included in the qualitative review. These publications describe 3 interventions that focused on: reducing paediatric tooth decay by educating families and communities; providing dental chemotherapeutics to pregnant women; and training mid-level dental care providers. While these approaches have the potential to improve the oral health of Alaska Native children, there are unique challenges regarding intervention acceptability, reach and sustainability. A case study and conceptual model are presented on multilevel strategies to reduce SSB intake among Alaska Native children. Conclusions. Few oral health interventions have been tested within Alaska Native communities. Community-centred multilevel interventions are promising approaches to improve the oral and systemic health of Alaska Native children. Future investigators should evaluate the feasibility of implementing multilevel interventions and policies within Alaska Native communities as a way to reduce children&#x0027;s health disparities
    corecore