24 research outputs found

    Interactions between vaccinia virus and sensitized macrophages in vitro

    Get PDF
    The action of peritoneal exudate cells (PEC) from normal and vaccinia virus infected mice on infectious vaccinia virus particles was investigatedin vitro. PEC from immune mice showed a significantly higher infectivity titre reduction (virus clearance, VC) than normal cells. This effect could be clearly attributed to the macrophage. Vaccinia virus multiplied in PEC from normal animals while there was no virus propagation in cells from immunized mice. The release of adsorbed or engulfed virus was reduced significantly in PEC from immunized animals. Anti-vaccinia-antibodies seem to activate normal macrophages to increased virus clearance. This stimulating effect was demonstrable only in the IgG fraction of the antiserum. The activity of macrophages from mice injected three times over a period of 14 days with vaccinia virus could be entirely blocked with anti-mouse-IgG, while PEC from mice injected one time six days previously were not inhibited

    Sorl1 as an Alzheimer's disease predisposition gene?

    Get PDF
    Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressively disabling impairments in memory, cognition, and non-cognitive behavioural symptoms. Sporadic AD is multifactorial and genetically complex. While several monogenic mutations cause early-onset AD and gene alleles have been suggested as AD susceptibility factors, the only extensively validated susceptibility gene for late-onset AD is the apolipoprotein E (APOE) epsilon4 allele. Alleles of the APOE gene do not account for all of the genetic load calculated to be responsible for AD predisposition. Recently, polymorphisms across the neuronal sortilin-related receptor (SORL1) gene were shown to be significantly associated with AD in several cohorts. Here we present the results of our large case-control whole-genome scan at over 500,000 polymorphisms which presents weak evidence for association and potentially narrows the association interval

    The sequence of rice chromosomes 11 and 12, rich in disease resistance genes and recent gene duplications

    Get PDF
    Background: Rice is an important staple food and, with the smallest cereal genome, serves as a reference species for studies on the evolution of cereals and other grasses. Therefore, decoding its entire genome will be a prerequisite for applied and basic research on this species and all other cereals. Results: We have determined and analyzed the complete sequences of two of its chromosomes, 11 and 12, which total 55.9 Mb (14.3% of the entire genome length), based on a set of overlapping clones. A total of 5,993 non-transposable element related genes are present on these chromosomes. Among them are 289 disease resistance-like and 28 defense-response genes, a higher proportion of these categories than on any other rice chromosome. A three-Mb segment on both chromosomes resulted from a duplication 7.7 million years ago (mya), the most recent large-scale duplication in the rice genome. Paralogous gene copies within this segmental duplication can be aligned with genomic assemblies from sorghum and maize. Although these gene copies are preserved on both chromosomes, their expression patterns have diverged. When the gene order of rice chromosomes 11 and 12 was compared to wheat gene loci, significant synteny between these orthologous regions was detected, illustrating the presence of conserved genes alternating with recently evolved genes. Conclusion: Because the resistance and defense response genes, enriched on these chromosomes relative to the whole genome, also occur in clusters, they provide a preferred target for breeding durable disease resistance in rice and the isolation of their allelic variants. The recent duplication of a large chromosomal segment coupled with the high density of disease resistance gene clusters makes this the most recently evolved part of the rice genome. Based on syntenic alignments of these chromosomes, rice chromosome 11 and 12 do not appear to have resulted from a single whole-genome duplication event as previously suggested

    Pilot clinical trial and phenotypic analysis in chemotherapy-pretreated, metastatic triple-negative breast cancer patients treated with oral TAK-228 and TAK-117 (PIKTOR) to increase DNA damage repair deficiency followed by cisplatin and nab paclitaxel

    No full text
    Abstract Background A subset of triple-negative breast cancers (TNBCs) have homologous recombination deficiency with upregulation of compensatory DNA repair pathways. PIKTOR, a combination of TAK-228 (TORC1/2 inhibitor) and TAK-117 (PI3Kα inhibitor), is hypothesized to increase genomic instability and increase DNA damage repair (DDR) deficiency, leading to increased sensitivity to DNA-damaging chemotherapy and to immune checkpoint blockade inhibitors. Methods 10 metastatic TNBC patients received 4 mg TAK-228 and 200 mg TAK-117 (PIKTOR) orally each day for 3 days followed by 4 days off, weekly, until disease progression (PD), followed by intravenous cisplatin 75 mg/m2 plus nab paclitaxel 220 mg/m2 every 3 weeks for up to 6 cycles. Patients received subsequent treatment with pembrolizumab and/or chemotherapy. Primary endpoints were objective response rate with cisplatin/nab paclitaxel and safety. Biopsies of a metastatic lesion were collected prior to and at PD on PIKTOR. Whole exome and RNA-sequencing and reverse phase protein arrays (RPPA) were used to phenotype tumors pre- and post-PIKTOR for alterations in DDR, proliferation, and immune response. Results With cisplatin/nab paclitaxel (cis/nab pac) therapy post PIKTOR, 3 patients had clinical benefit (1 partial response (PR) and 2 stable disease (SD) ≥ 6 months) and continued to have durable benefit in progression-free survival with pembrolizumab post-cis/nab pac for 1.2, 2, and 3.6 years. Their post-PIKTOR metastatic tissue displayed decreased mismatch repair (MMR), increased tumor mutation burden, and significantly lower levels of 53BP1, DAG Lipase β, GCN2, AKT Ser473, and PKCzeta Thr410/403 compared to pre-PIKTOR tumor tissue. Conclusions Priming patients’ chemotherapy-pretreated metastatic TNBC with PIKTOR led to very prolonged response/disease control with subsequent cis/nab pac, followed by pembrolizumab, in 3 of 10 treated patients. Our multi-omics approach revealed a higher number of genomic alterations, reductions in MMR, and alterations in immune and stress response pathways post-PIKTOR in patients who had durable responses. Trial Registration This clinical trial was registered on June 21, 2017, at ClinicalTrials.gov using identifier NCT03193853

    A high-density whole-genome association study reveals that APOE is the major susceptibility gene for sporadic late-onset Alzheimer's disease

    Full text link
    This study provides empirical support for the suggestion that the APOE locus is the major susceptibility gene for late-onset AD in the human genome, with an OR significantly greater than any other locus in the human genome. It also supports the feasibility of the ultra-high-density whole-genome association approach to the study of AD and other heritable phenotypes. These whole-genome association studies show great promise to identify additional genes that contribute to the risk of AD

    A survey of genetic human cortical gene expression

    No full text
    It is widely assumed that genetic differences in gene expression underpin much of the difference among individuals and many of the quantitative traits of interest to geneticists. Despite this, there has been little work on genetic variability in human gene expression and almost none in the human brain, because tools for assessing this genetic variability have not been available. Now, with whole-genome SNP genotyping arrays and whole-transcriptome expression arrays, such experiments have become feasible. We have carried out whole-genome genotyping and expression analysis on a series of 193 neuropathologically normal human brain samples using the Affymetrix GeneChip Human Mapping 500K Array Set and Illumina HumanRefseq-8 Expression BeadChip platforms. Here we present data showing that 58% of the transcriptome is cortically expressed in at least 5% of our samples and that of these cortically expressed transcripts, 21% have expression profiles that correlate with their genotype. These genetic-expression effects should be useful in determining the underlying biology of associations with common diseases of the human brain and in guiding the analysis of the genomic regions involved in the control of normal gene expression
    corecore