45 research outputs found

    Glucose is an adequate energy substrate for the depolarizing action of GABA and glycine in the neonatal rat spinal cord in vitro

    No full text
    International audienceIn vitro studies have repeatedly demonstrated that the neurotransmitters γ-aminobutyric acid (GABA) and glycine depolarize immature neurons in many areas of the CNS, including the spinal cord. This widely accepted phenomenon was recently challenged by experiments showing that the depolarizing action of GABA on neonatal hippocampus and neocortex in vitro was prevented by adding energy substrates (ES), such as the ketone body metabolite dl-β-hydroxybutyric acid (DL-BHB), lactate, or pyruvate to the artificial cerebrospinal fluid (ACSF). It was suggested that GABA-induced depolarizations in vitro might be an artifact due to inadequate energy supply when glucose is the sole energy source, consistent with the energy metabolism of neonatal rat brain being largely dependent on ESs other than glucose. Here we examined the effects of these ESs (DL-BHB, lactate, pyruvate) on inhibitory postsynaptic potentials (IPSPs) recorded from neonatal rat lumbar spinal cord motoneurons (MNs), in vitro. We report that supplementing the ACSF with physiologic concentrations of DL-BHB, lactate, or pyruvate does not alter the reversal potential of IPSPs (EIPSP). Only high concentrations of pyruvate hyperpolarized EIPSP. In addition, the depolarizing action of GABA on primary afferent terminals was not affected by supplementing the ACSF with ES at physiologic concentrations. We conclude that depolarizing IPSPs in immature MNs and the primary afferent depolarizations are not caused by inadequate energy supply. Glucose at its standard concentration appears to be an adequate ES for the neonatal spinal cord in vitro

    Increased incidence of gap junctional coupling between spinal motoneurones following transient blockade of NMDA receptors in neonatal rats

    No full text
    Neonatal rat motoneurones are electrically coupled via gap junctions and the incidence of this coupling declines during postnatal development. The mechanisms involved in this developmental regulation of gap junctional communication are largely unknown. Here we have studied the role of NMDA receptor-mediated glutamatergic synaptic activity in the regulation of motoneurone coupling. Gap junctional coupling was demonstrated by the presence of graded, short latency depolarising potentials following ventral root stimulation, and by the transfer of the low molecular weight tracer Neurobiotin to neighbouring motoneurones. Sites of close apposition between the somata and/or dendrites of the dye-coupled motoneurones were identified as potential sites of gap junctional coupling. Early postnatal blockade of the NMDA subtype of glutamate receptors using the non-competitive antagonist dizocilpine maleate (MK801) arrested the developmental decrease in electrotonic and dye coupling during the first postnatal week. These results suggest that the postnatal increase in glutamatergic synaptic activity associated with the onset of locomotion promote the loss of gap junctional connections between developing motoneurones
    corecore