76 research outputs found

    Online Control for Linear Dynamics: A Data-Driven Approach

    Full text link
    This paper considers an online control problem over a linear time-invariant system with unknown dynamics, bounded disturbance, and adversarial cost. We propose a data-driven strategy to reduce the regret of the controller. Unlike model-based methods, our algorithm does not identify the system model, instead, it leverages a single noise-free trajectory to calculate the accumulation of disturbance and makes decisions using the accumulated disturbance action controller we design, whose parameters are updated by online gradient descent. We prove that the regret of our algorithm is O(T)\mathcal{O}(\sqrt{T}) under mild assumptions, suggesting that its performance is on par with model-based methods

    Theoretical and Numerical Analysis of mechanical behaviors of a metamaterial-based shape memory polymer stent

    Get PDF
    Shape memory polymers (SMPs) have gained much attention in biomedical fields due to their good biocompatibility and biodegradability. Researches have validated the feasibility of shape memory polymer stent in treatment of vascular blockage. Nevertheless, the actual application of SMP stents is still in infancy. To improve the mechanical performance of SMP stent, a new geometric model based on metamaterial is proposed in this study. To verify the feasibility and mechanical behavior of this type of stent, buckling analysis, and in vivo expansion performance of SMP stent are simulated. Numerical results exhibit that stent of a smaller radius behaves a higher critical buckling load and smaller buckling displacement. Besides, a smaller contact area with vessel and smaller implanted stress are observed compared with traditional stents. This suggests that this SMP stent attributes to a reduced vascular restenosis. To characterize the radial strength of SMP stent, an analytical solution is derived by the assumption that the deformation of stent is mainly composed of bending and stretch. The radial strength of SMP stent is assessed in form of radial force. Analytical results reveal that radial strength is depended on the radius of stent and periodic numbers of unit cell in circumferential direction

    Modelling and simulation of the expansion of a shape memory polymer stent

    Get PDF
    Purpose – The purpose of this paper is to demonstrate the feasibility of using SMP for developing vascular stent. In particular the expansion performance is analyzed through extensive modeling and simulation. Design/methodology/approach –Firstly, we construct the model geometry and propose a constitutive model to describe the deformation of the stent due to the expansion process. We then simulate the expansion process under varying conditions, including different heating rates and recovery temperatures. Finally, we analyze the radial strength of the SMP stent. Findings –A less invasive and stable expansion performance of the SMP stent is confirmed by the simulation method. A fitting function of the expansion process is proposed based on the characteristics of the SMP. Research limitations/implications – The effects of dynamic blood flow on the SMP stent is ignored. A fluid-structure interaction analysis may need to be considered to give a more accurate description of the behavior of the SMP stent. Social implications – Our findings will provide guidance for the rational design and application of SMP stents. Originality/value – This is the first time that the expansion performance of a SMP stent has been analyzed qualitatively and quantitatively through modelling and simulation

    Response of Planetary Waves and Tides to the 2019 Southern Hemisphere Ssw and q2dw Enhancement in Jan-Feb 2020 Observed by Condor Meteor Radar in Chile and Adelaide Meteor Radar in Australia

    Get PDF
    A new multi-static meteor radar (CONDOR) has recently been installed in northern Chile. This CONDOR meteor radar (30.3°S, 70.7°W) and the Adelaide meteor radar (35°S, 138°E) have provided longitudinally spaced observations of the mean winds, tides and planetary waves of the PW-tides interaction cases we present here. We have observed a Quasi-6-Day Wave (Q6DW) enhancement in MLT winds at the middle latitudes (30.3°S, 35°S) during the unusual minor South Hemisphere SSW 2019 by the ground-based meteor radars. Tidal analysis also indicates modulation of the Q6DW w/ amplitude ~15 [m/s] and diurnal tides w/ amplitude ~60 [m/s]. Another case we present here is a dominant Quasi-2-Day Wave (Q2DW) with up to 50 [km/s] amplitude occurring in SH summer 2020 and its interaction with the diurnal and semidiurnal tides. The period of this Q2DW activity changes from ~50hr to ~48hr since Jan 19, which suggests the phase locking mechanism [McCormack et al., 2010]. The 24hr-feature and 12hr-feature show off-phase variations during the Q2DW enhancement time with amplitude of ~40 [m/s]

    Material characterization using artificial neural network

    Get PDF
    Indentation experiments have been carried out over the past century to determine hardness of materials. Modern indentation machines have the capability to continuously monitor load and displacement to high precision and accuracy. In recent years, research interests have focussed on methods to extract material properties from indentation load-displacement curves. Analytical methods to interpret the indentation load-displacement curves are difficult to formulate due to material and geometric nonlinearities as well as complex contact interactions. In the present study, an artificial neural network model was constructed for interpretation of indentation load-displacement curves. Large strain-large deformation finite element analyses were first carried out to simulate indentation experiments. The data from finite element analyses were then used to train the artificial neural network model. The artificial neural network model was able to accurately determine the material properties when presented with load-displacement curves which were not used in the training process. The proposed artificial neural network model is robust and directly relates the characteristics of the indentation loaddisplacement curve to the elasto-plastic material properties

    Gravity Waves Generated by the Hunga Tonga-Hunga Ha‘Apai Volcanic Eruption and Their Global Propagation in The Mesosphere/Lower Thermosphere Observed by Meteor Radars And Modeled With the High-Altitude General Mechanistic Circulation Model

    Get PDF
    The Hunga Tonga-Hunga Ha‘apai volcano erupted on 15th January 2022, launching Lamb waves and gravity waves into the atmosphere. In this study, we present results using 13 globally distributed meteor radars and identify the volcanic- caused gravity waves in the mesospheric/lower thermospheric winds. Leveraging the High-Altitude Mechanistic General Circulation Model (HIAMCM), we compare the global propagation of these gravity waves. We observed an eastward propagating gravity wave packet with an observed phase speed of 240±5.7 m/s and a westward propagating gravity wave with an observed phase speed of 166.5 ±6.4 m/s. We identified these waves in the HIAMCM and obtained very good agreement of the observed phase speeds of 239.5±4.3 m/s and 162.2±6.1 m/s for the eastward and the westward waves, respectively. Considering that HIAMCM perturbations in the mesosphere/lower thermosphere were the result of the secondary waves generated by the dissipation of the primary gravity waves from the volcanic eruption affirms the importance of higher-order wave generation. Furthermore, based on meteor radar observations of the gravity wave propagation around the globe, we estimate the eruption time to be within 6 minutes of the nominal value of 15th January 2022 04:15 UTC and localized the volcanic eruption to be within 78 km relative to the World Geodetic System 84 coordinates of the volcano confirming our estimates to be realistic

    Local barycentric coordinates

    Get PDF
    Barycentric coordinates yield a powerful and yet simple paradigm to interpolate data values on polyhedral domains. They represent interior points of the domain as an affine combination of a set of control points, defining an interpolation scheme for any function defined on a set of control points. Numerous barycentric coordinate schemes have been proposed satisfying a large variety of properties. However, they typically define interpolation as a combination of all control points. Thus a local change in the value at a single control point will create a global change by propagation into the whole domain. In this context, we present a family of local barycentric coordinates (LBC), which select for each interior point a small set of control points and satisfy common requirements on barycentric coordinates, such as linearity, non-negativity, and smoothness. LBC are achieved through a convex optimization based on total variation, and provide a compact representation that reduces memory footprint and allows for fast deformations. Our experiments show that LBC provide more local and finer control on shape deformation than previous approaches, and lead to more intuitive deformation results

    Comparison of MLT Momentum Fluxes Over the Andes at Four Different Latitudinal Sectors Using Multistatic Radar Configurations

    Get PDF
    The middle atmosphere over South America, particularly above the Andes mountain range, is known as one of the most dynamically active regions in the world. Previous studies have investigated wave dynamics at mesosphere and lower thermosphere (MLT) altitudes within this region, but only a handful of them have made use of continuous measurements provided by specular meteor radars (SMRs). Furthermore, it was only until recently that MLT horizontal wind gradients were estimated for the first time using Spread Spectrum Interferometric Multistatic meteor radar Observing Network (SIMONe) Argentina, a multistatic SMR network located in southern Patagonia. By observing larger amounts of meteors from different viewing angles, multistatic SMRs allow, among others, for more reliable momentum flux estimates. In this work, we explore and compare the summer and winter MLT momentum flux dynamics at low and middle latitude sectors over the Andes mountain range. We also investigate the intermittency of the total momentum flux over these sectors. For this purpose, we analyze measurements provided by four multistatic SMR networks: SIMONe Peru (12°S), CONDOR (30°S), SIMONe Argentina (49°S) and MMARIA-SAAMER (54°S). We find that the momentum flux dynamics can change considerably over distances of only a few hundred km (e.g., southern Argentina). On the other hand, the contributions of large momentum fluxes to the total flux can be similar between regions separated by thousands of km (e.g., between Peru and southern Argentina)

    Atmospheric Tomography Using the Nordic Meteor Radar Cluster And Chilean Observation Network de Meteor Radars: Network Details and 3D-Var Retrieval

    Get PDF
    Ground-based remote sensing of atmospheric parameters is often limited to single station observations by vertical profiles at a certain geographic location. This is a limiting factor for investigating gravity wave dynamics as the spatial information is often missing, e.g., horizontal wavelength, propagation direction or intrinsic frequency. In this study, we present a new retrieval algorithm for multistatic meteor radar networks to obtain tomographic 3-D wind fields within a pre-defined domain area. The algorithm is part of the Agile Software for Gravity wAve Regional Dynamics (ASGARD) and called 3D-Var, and based on the optimal estimation technique and Bayesian statistics. The performance of the 3D-Var retrieval is demonstrated using two meteor radar networks: the Nordic Meteor Radar Cluster and the Chilean Observation Network De Meteor Radars (CONDOR). The optimal estimation implementation provide statistically sound solutions and diagnostics from the averaging kernels and measurement response. We present initial scientific results such as body forces of breaking gravity waves leading to two counter-rotating vortices and horizontal wavelength spectra indicating a transition between the rotational k-3 and divergent k-5/3 mode at scales of 80–120 km. In addition, we performed a keogram analysis over extended periods to reflect the latitudinal and temporal impact of a minor sudden stratospheric warming in December 2019. Finally, we demonstrate the applicability of the 3D-Var algorithm to perform large-scale retrievals to derive meteorological wind maps covering a latitude region from Svalbard, north of the European Arctic mainland, to central Norway

    Gravity waves generated by the Hunga Tonga–Hunga Ha′apai volcanic eruption and their global propagation in the mesosphere/lower thermosphere observed by meteor radars and modeled with the High-Altitude general Mechanistic Circulation Model

    Get PDF
    The Hunga Tonga–Hunga Ha′apai volcano erupted on 15 January 2022, launching Lamb waves and gravity waves into the atmosphere. In this study, we present results using 13 globally distributed meteor radars and identify the volcanogenic gravity waves in the mesospheric/lower thermospheric winds. Leveraging the High-Altitude Mechanistic general Circulation Model (HIAMCM), we compare the global propagation of these gravity waves. We observed an eastward-propagating gravity wave packet with an observed phase speed of 240 ± 5.7 m s−1 and a westward-propagating gravity wave with an observed phase speed of 166.5 ± 6.4 m s−1. We identified these waves in HIAMCM and obtained very good agreement of the observed phase speeds of 239.5 ± 4.3 and 162.2 ± 6.1 m s−1 for the eastward the westward waves, respectively. Considering that HIAMCM perturbations in the mesosphere/lower thermosphere were the result of the secondary waves generated by the dissipation of the primary gravity waves from the volcanic eruption, this affirms the importance of higher-order wave generation. Furthermore, based on meteor radar observations of the gravity wave propagation around the globe, we estimate the eruption time to be within 6 min of the nominal value of 15 January 2022 04:15 UTC, and we localized the volcanic eruption to be within 78 km relative to the World Geodetic System 84 coordinates of the volcano, confirming our estimates to be realistic
    • …
    corecore