162 research outputs found

    Multilevel ultrafast flexible nanoscale nonvolatile hybrid graphene oxide-titanium oxide memories

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.Graphene oxide (GO) resistive memories offer the promise of low-cost environmentally sustainable fabrication, high mechanical flexibility and high optical transparency, making them ideally suited to future flexible and transparent electronics applications. However, the dimensional and temporal scalability of GO memories, i.e., how small they can be made and how fast they can be switched, is an area that has received scant attention. Moreover, a plethora of GO resistive switching characteristics and mechanisms has been reported in the literature, sometimes leading to a confusing and conflicting picture. Consequently, the potential for graphene oxide to deliver high-performance memories operating on nanometer length and nanosecond time scales is currently unknown. Here we address such shortcomings, presenting not only the smallest (50 nm), fastest (sub-5 ns), thinnest (8 nm) GO-based memory devices produced to date, but also demonstrate that our approach provides easily accessible multilevel (4-level, 2-bit per cell) storage capabilities along with excellent endurance and retention performance-all on both rigid and flexible substrates. Via comprehensive experimental characterizations backed-up by detailed atomistic simulations, we also show that the resistive switching mechanism in our Pt/GO/Ti/Pt devices is driven by redox reactions in the interfacial region between the top (Ti) electrode and the GO layer.This work was carried out under the auspices of the EU FP7 project CareRAMM. This project received funding from the European Union Seventh Framework Programme (FP7/2007- 2013) under grant agreement no. 309980. The authors are grateful for helpful discussions with all CareRAMM partners, particularly Prof. Andrea Ferrari and Ms. Anna Ott at the University of Cambridge, and Drs. Abu Sebastian and Wabe Koelmans at IBM Research Zurich. We also gratefully acknowledge the assistance of the National EPSRC XPS User’s Service (NEXUS) at Newcastle University, U.K. (an EPSRC Mid-Range Facility) in carrying out the XPS measurement

    Temperature Evolution in Nanoscale Carbon-Based Memory Devices Due to Local Joule Heating

    Get PDF
    © 2002-2012 IEEE. Tetrahedral amorphous (ta-C) carbon-based memory devices have recently gained traction due to their good scalability and promising properties like nanosecond switching speeds. However, cycling endurance is still a key challenge. In this paper, we present a model that takes local fluctuations in sp 2 and sp 3 content into account when describing the conductivity of ta-C memory devices. We present a detailed study of the conductivity of ta-C memory devices ranging from ohmic behavior at low electric fields to dielectric breakdown. The study consists of pulsed switching experiments and device-scale simulations, which allows us for the first time to provide insights into the local temperature distribution at the onset of memory switching

    First national intercomparison of solar ultraviolet radiometers in Italy

    Get PDF
    A blind intercomparison of ground-based ultraviolet (UV) instruments has been organized for the first time in Italy. The campaign was coordinated by the Environmental Protection Agency of Aosta Valley (ARPA Valle d'Aosta) and took place in Saint-Christophe (45.8 degrees N, 7.4 degrees E, 570 m a.s.l.), in the Alpine region, from 8 to 23 June 2010. It involved 8 institutions, 10 broadband radiometers, 2 filter radiometers and 2 spectroradiometers. Synchronized measurements of downward global solar UV irradiance at the ground were collected and the raw series were then individually processed by the respective operators on the base of their own procedures and calibration data. A radiative transfer model was successfully applied as an interpretative tool. The input parameters and output results are described in detail. The comparison was performed in terms of global solar UV Index and integrated UV-A irradiance against a well-calibrated double monochromator spectroradiometer as reference. An improved algorithm for comparing broadband data and spectra has been developed and is discussed in detail. For some instruments, we found average deviations ranging from -16% up to 20% relative to the reference and diurnal variations as large as 15% even in clear days. Remarkable deviations were found for the instruments calibrated in the manufacturers' facilities and never involved in field intercomparison. Finally, some recommendations to the UV operators based on the campaign results are proposed

    Nucleation mechanism for the direct graphite-to-diamond phase transition

    Full text link
    Graphite and diamond have comparable free energies, yet forming diamond from graphite is far from easy. In the absence of a catalyst, pressures that are significantly higher than the equilibrium coexistence pressures are required to induce the graphite-to-diamond transition. Furthermore, the formation of the metastable hexagonal polymorph of diamond instead of the more stable cubic diamond is favored at lower temperatures. The concerted mechanism suggested in previous theoretical studies cannot explain these phenomena. Using an ab initio quality neural-network potential we performed a large-scale study of the graphite-to-diamond transition assuming that it occurs via nucleation. The nucleation mechanism accounts for the observed phenomenology and reveals its microscopic origins. We demonstrated that the large lattice distortions that accompany the formation of the diamond nuclei inhibit the phase transition at low pressure and direct it towards the hexagonal diamond phase at higher pressure. The nucleation mechanism proposed in this work is an important step towards a better understanding of structural transformations in a wide range of complex systems such as amorphous carbon and carbon nanomaterials

    The glycopeptide CSF114(Glc) detects serum antibodies in multiple sclerosis.

    Get PDF
    Synthetic glycopeptides have the potential to detect antibodies in multiple sclerosis (MS). In the present study, we analyzed the antibodies (IgM class, IgG class and IgG subclasses) to the synthetic glycopeptide CSF114(Glc) in the serum of 186 MS patients, 166 blood donors (BDs), 25 patients affected by meningitis/encephalitis, 41 affected by systemic lupus erythematosus (SLE) and 49 affected by rheumatoid arthritis (RA). The IgM antibody level to CSF114(Glc) was significantly increased in MS patients versus BDs (p<0.001) or versus other autoimmune diseases (SLE or RA, p<0.001). The IgG response was restricted to the subclass IgG2. IgM antibodies to CSF114(Glc) were found in 30% of relapsing/remitting MS patients and, at lower levels, in subjects affected by meningitis/encephalitis. The study of antibodies to CSF114(Glc) is a new, potential immunological marker of MS

    Effects of immunomodulatory treatment with subcutaneous interferon beta-1a oncognitive decline in mildly disabled patients with relapsing-remitting multiple sclerosis

    Get PDF
    The objective of this study was to assess the effects of subcutaneous (sc) interferon beta-1a (IFNbeta-1a) on cognition in mildly disabled patients with relapsing-remitting multiple sclerosis (RRMS). Patients aged 18-50 years with RRMS (McDonald criteria; Expanded Disability Status Scale score <or=4.0) were assigned IFNbeta therapy at the physician's discretion and underwent standardized magnetic resonance imaging, neurological examination and neuropsychological testing at the baseline and regular intervals for up to three years. This analysis included 459 patients who received sc IFNbeta-1a (44 mcg: n = 236; 22 mcg: n = 223; three-year follow up was available for 318 patients). The hazard ratio for cognitive impairment over three years (44 mcg versus 22 mcg) was 0.68 (95% confidence interval [CI]: 0.480-0.972), suggesting a 32% lower risk with the higher dose treatment. At year 3, the proportion of patients who were cognitively impaired increased slightly from 23.5% at the baseline to 24.8% in the IFNbeta-1a 22 mcg treatment group, but remained stable at 15.2% in the IFNbeta-1a 44 mcg treatment group. The proportion of patients with cognitive impairment at year 3 was significantly higher in the 22 mcg group than in the 44 mcg group (P = 0.03), although a trend was also seen at the baseline (P = 0.058). Multivariate logistic regression (corrected for baseline cognitive deficits) indicated that treatment with the higher dose of IFNbeta-1a was predictive of lower cognitive impairment at three years (odds ratio: 0.51, 95% CI: 0.26-0.99) compared with the lower dose of IFNbeta-1a. These findings suggest that sc IFNbeta-1a may have dose-dependent cognitive benefits in mildly disabled patients with RRMS, and may support early initiation of high-dose IFNbeta-1a treatment
    • …
    corecore