51 research outputs found

    Ultrafast estimation of electronic couplings for electron transfer between pi-conjugated organic molecules. II

    Get PDF
    The development of highly efficient methods for the calculation of electronic coupling matrix elements between the electron donor and acceptor is an important goal in theoretical organic semiconductor research. In Paper I [F. Gajdos, S. Valner, F. Hoffmann, J. Spencer, M. Breuer, A. Kubas, M. Dupuis, and J. Blumberger, J. Chem. Theory Comput. 10, 4653 (2014)], we introduced the analytic overlap method (AOM) for this purpose, which is an ultrafast electronic coupling estimator parameterized to and orders of magnitude faster than density functional theory (DFT) calculations at a reasonably small loss in accuracy. In this work, we reparameterize and extend the AOM to molecules containing nitrogen, oxygen, fluorine, and sulfur heteroatoms using 921 dimer configurations from the recently introduced HAB79 dataset. We find again a very good linear correlation between the frontier orbital overlap, calculated ultrafast in an optimized minimum Slater basis, and DFT reference electronic couplings. The new parameterization scheme is shown to be transferable to sulfur-containing polyaromatic hydrocarbons in experimentally resolved dimeric configurations. Our extension of the AOM enables high-throughput screening of very large databases of chemically diverse organic crystal structures and the application of computationally intense non-adiabatic molecular dynamics methods to charge transport in state-of-the-art organic semiconductors, e.g., non-fullerene acceptors

    Ultrathin porphyrin and tetra-indole covalent organic frameworks for organic electronics applications

    Get PDF
    The electronic and charge transport properties of porphyrin and tetra-indole porphyrinoid single layer covalent organic frameworks (COFs) are investigated by means of density functional theory calculations. Ultrathin diacetylene-linked COFs based on oxidized tetra-indole cores are narrow gap 2D semiconductors, featuring a pronounced anisotropic electronic band structure due to the combination of dispersive and flat band characteristics, while registering high room temperature charge carrier mobilities. The capability of bandgap and charge carrier localization tuning via the careful selection of fourfold porphyrin and porphyrinoid cores and twofold articulated linkers is demonstrated, with the majority of systems exhibiting electronic gap values between 1.75 eV and 2.3 eV. Tetra-indoles are also capable of forming stable monolayers via non-articulated core fusing, resulting in 2D morphologies with extended π-conjugation and semi-metallic behavior

    Identifying high-mobility tetracene derivatives using a non-adiabatic molecular dynamics approach

    Get PDF
    The search for conductive soft matter materials with significant charge mobility under ambient conditions has been a major priority in organic electronics (OE) research. Alkylated tetracenes are promising cost-effective candidate molecules that can be synthesized using wet chemistry methods, resulting in columnar single crystals with pronounced structural stability at and above room temperature. A remarkable characteristic of these materials is the capability of tuning the tetracene core intracolumnar stacking pattern and the crystal melting point via the side chain length and type modifications. In this study, we examine the performance of a series of alkylated tetracenes as hole conducting materials using a novel atomistic simulation technique that allows us to predict both the charge transport mechanism and mobilities. Our simulations demonstrate that molecular wires of alkylated tetracenes are capable of polaronic hole conduction at room temperature, with mobility values ranging up to 21 cm2 V−1 s−1, thus rendering such materials a highly promising choice for flexible OE applications. As regards the charge transfer robustness, two promising tetracene derivatives are identified with the capability of seamless inter-wire polaron delocalization, alleviating possible transfer bottlenecks due to local molecular defects. Our findings suggest that alkylated tetracenes offer an attractive route towards flexible columnar OE materials with unprecedented hole mobilitie

    Impact of Nanoscale Morphology on Charge Carrier Delocalization and Mobility in an Organic Semiconductor

    Get PDF
    A central challenge of organic semiconductor research is to make cheap, disordered materials that exhibit high electrical conductivity. Unfortunately, this endeavor is hampered by the poor fundamental understanding of the relationship between molecular packing structure and charge carrier mobility. Here a novel computational methodology is presented that fills this gap. Using a melt-quench procedure it is shown that amorphous pentacene spontaneously self-assembles to nanocrystalline structures that, at long quench times, form the characteristic herringbone layer of the single crystal. Quantum dynamical simulations of electron hole transport show a clear correlation between the crystallinity of the sample, the quantum delocalization, and the mobility of the charge carrier. Surprisingly, the long-held belief that charge carriers form relatively localized polarons in disordered OS is only valid for fully amorphous structures—for nanocrystalline and crystalline samples, significant charge carrier delocalization over several nanometers occurs that underpins their improved conductivities. The good agreement with experimentally available data makes the presented methodology a robust computational tool for the predictive engineering of disordered organic materials

    HAB79: A New Molecular Dataset for Benchmarking DFT and DFTB Electronic Couplings Against High-Level Ab-initio Calculations

    Get PDF
    A new molecular dataset called HAB79 is introduced to provide ab-initio reference values for electronic couplings (transfer integrals) and to benchmark density functional theory (DFT) and density functional tight-binding (DFTB) calculations. The HAB79 dataset is comprised of 79 planar heterocyclic polyaromatic hydrocarbon molecules frequently encountered in organic (opto)electronics, arranged to 921 structurally diverse dimer configurations. We show that CASSCF/NEVPT2 with a minimal active space provides a robust reference method that can be applied to the relatively large molecules of the dataset. Electronic couplings are largest for cofacial dimers, in particular sulfur-containing polyaromatic hydrocarbons, with values in excess of 0.5 eV, followed by parallel displaced cofacial dimers. V-shaped dimer motifs, often encountered in the herringbone layers of organic crystals, exhibit medium-sized couplings whereas T-shaped dimers have the lowest couplings. DFT values obtained from the projector operator-based diabatization (POD) method are initially benchmarked against the smaller databases HAB11 (HAB7-) and found to systematically improve when climbing Jacob's ladder, giving mean relative unsigned errors (MRUE) of 27.7% (26.3%) for the GGA functional BLYP, 20.7% (15.8%) for hybrid functional B3LYP and 5.2% (7.5%) for the long-range corrected hybrid functional omega-B97X. Cost effective POD in combination with a GGA functional (PBE) and very efficient DFTB calculations on the dimers of the HAB79 database give a good linear correlation with the CASSCF/NEVPT2 reference data, which, after scaling with a multiplicative constant, gives reasonably small MRUEs of 17.9% and 40.1%, respectively, bearing in mind that couplings in HAB79 vary over 4 orders of magnitude

    HAB79: A new molecular dataset for benchmarking DFT and DFTB electronic couplings against high-level ab initio calculations

    Get PDF
    A new molecular dataset called HAB79 is introduced to provide ab initio reference values for electronic couplings (transfer integrals) and to benchmark density functional theory (DFT) and density functional tight-binding (DFTB) calculations. The HAB79 dataset is composed of 79 planar heterocyclic polyaromatic hydrocarbon molecules frequently encountered in organic (opto)electronics, arranged to 921 structurally diverse dimer configurations. We show that CASSCF/NEVPT2 with a minimal active space provides a robust reference method that can be applied to the relatively large molecules of the dataset. Electronic couplings are largest for cofacial dimers, in particular, sulfur-containing polyaromatic hydrocarbons, with values in excess of 0.5 eV, followed by parallel displaced cofacial dimers. V-shaped dimer motifs, often encountered in the herringbone layers of organic crystals, exhibit medium-sized couplings, whereas T-shaped dimers have the lowest couplings. DFT values obtained from the projector operator-based diabatization (POD) method are initially benchmarked against the smaller databases HAB11 (HAB7-) and found to systematically improve when climbing Jacob’s ladder, giving mean relative unsigned errors (MRUEs) of 27.7% (26.3%) for the generalized gradient approximation (GGA) functional BLYP, 20.7% (15.8%) for hybrid functional B3LYP, and 5.2% (7.5%) for the long-range corrected hybrid functional omega-B97X. Cost-effective POD in combination with a GGA functional and very efficient DFTB calculations on the dimers of the HAB79 database give a good linear correlation with the CASSCF/NEVPT2 reference data, which, after scaling with a multiplicative constant, gives reasonably small MRUEs of 17.9% and 40.1%, respectively, bearing in mind that couplings in HAB79 vary over 4 orders of magnitude. The ab initio reference data reported here are expected to be useful for benchmarking other DFT or semi-empirical approaches for electronic coupling calculations

    Chalk-steel Interface testing for marine energy foundations

    Get PDF
    The Energy Technology Partnership (ETP) and Lloyd’s Register EMEA are gratefully acknowledged for the funding of this project. The authors would also like to acknowledge the support of the European Regional Development Fund (ERDF) SMART Centre at the University of Dundee that allowed purchase of the equipment used during this study. The views expressed are those of the authors alone, and do not necessarily represent the views of their respective companies or employing organizations.Peer reviewedPostprin

    Quantum localization and delocalization of charge carriers in organic semiconducting crystals

    Get PDF
    Charge carrier transport in organic semiconductors is at the heart of many revolutionary technologies ranging from organic transistors, light-emitting diodes, flexible displays and photovoltaic cells. Yet, the nature of charge carriers and their transport mechanism in these materials is still unclear. Here we show that by solving the time-dependent electronic Schrödinger equation coupled to nuclear motion for eight organic molecular crystals, the excess charge carrier forms a polaron delocalized over up to 10–20 molecules in the most conductive crystals. The polaron propagates through the crystal by diffusive jumps over several lattice spacings at a time during which it expands more than twice its size. Computed values for polaron size and charge mobility are in excellent agreement with experimental estimates and correlate very well with the recently proposed transient localization theor
    • 

    corecore