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Abstract 

 

The development of highly efficient methods for the calculation of electronic coupling matrix 

elements between electron donor and acceptor is an important goal in theoretical organic 

semiconductor research. In previous work we introduced the analytic overlap method (AOM) 

for this purpose, which is an ultrafast electronic coupling estimator parametrized to and orders 

of magnitude faster than density functional theory (DFT) calculations at a reasonably small 

loss in accuracy. In this work we reparametrize and extend AOM to molecules containing 

nitrogen, oxygen, fluorine, and sulfur heteroatoms using 921 dimer configurations from the 

recently introduced HAB79 dataset. We find again a very good linear correlation between the 

frontier orbital overlap, calculated ultrafast in an optimized minimum Slater basis, and DFT 

reference electronic couplings. The new parametrization scheme is shown to be transferable to 

sulfur-containing polyaromatic hydrocarbons in experimentally resolved dimeric 

configurations. Our extension of AOM enables high-throughput screening of very large 

databases of chemically diverse organic crystal structures and the application of 

computationally intense non-adiabatic molecular dynamics methods to charge transport in 

state-of-the-art organic semiconductors, e.g., non-fullerene acceptors. 
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I. Introduction 

 

The calculation of electronic coupling matrix elements, or transfer integrals, is at the 

very heart of charge transfer simulations in biology and materials science [1-4]. Computational 

techniques for electronic couplings have significantly matured over the last 20 years and, 

depending on the requirements of the problem at hand, a large number of methods can now be 

employed ranging from high accuracy but time consuming ab-initio calculations [5-7] to 

density functional theory (DFT) calculations, e.g. time-dependent DFT (TDDFT) [8], 

constrained DFT (CDFT) [9-14],  projector operator-based diabatization (POD) [15-17], 

fragment-orbital DFT (FODFT) [18, 19], and frozen density embedding [20, 21], to fast semi-

empirical density functional tight binding (DFTB) [6, 7, 22], and the ultrafast analytic overlap 

method (AOM) [23].  

For the modelling of charge carrier transport in soft condensed media (e.g., organic and 

biological semiconductors) it is important to properly account for the strong thermal 

fluctuations of the molecules and several methods have been developed to do that, e.g. Kinetic 

Monte Carlo [24-27], transient localization theory [28, 29] or non-adiabatic molecular 

dynamics (MD) simulations [30-31]. A common feature of these methods is the very large 

number of transfer integrals that need to be evaluated to converge charge mobilities. As a result, 

one needs to select an appropriate electronic coupling calculation scheme as to strike balance 

between computational efficiency and chemical accuracy. 

The analytic overlap method for electronic coupling calculation was designed with 

these requirements in mind [23]. The idea behind this method is that the computationally 

expensive DFT calculation of charge transfer integrals can be effectively substituted by very 

rapid estimations of frontier molecular orbital (FMO) overlap integrals, multiplied by an 

appropriate scaling coefficient. The FMOs are reconstructed very efficiently in an optimized 

minimum Slater type orbital (STO) basis set allowing the ultrafast analytic calculation of FMO 

overlaps and electronic couplings for a large number of dimer configurations [32]. 

The parametrization of AOM relies on the compilation of a molecular training set and 

a series of single molecule DFT calculation for the determination of the FMOs and dimer 

electronic coupling calculations using an appropriate level of theory as to establish a linear 

approximation between overlap and charge transfer integrals. The original version of the AOM 

relied on planewave DFT calculations for both single molecule and dimeric configurations 

using a limited molecular training set comprised of small pi-conjugated molecules and C60 
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fullerenes, primarily focusing on carbon-rich compounds with minimal heteroatom 

contribution to the FMO electronic density [23]. 

From a materials point of view, the AOM has been successfully utilized for the 

modeling of charge transfer mechanisms for homocyclic pristine and functionalized 

polyaromatic hydrocarbons (PAHs) for organic electronics [33-36]. Furthermore, from a 

theoretical and method development perspective, the AOM is at the heart of the fragment 

orbital-based surface hopping non-adiabatic MD simulation methodology for charge transport 

modeling [34], while simultaneously constituting a robust electronic couplings estimator for 

pi-conjugated systems [7]. 

Two issues limit the applicability of our previous implementation of the AOM [23]. 

First, reference electronic couplings were obtained with planewave DFT calculations in the gas 

phase, which generated a significant computational overhead for large pi-conjugated organic 

molecules compared to atomic orbital-based DFT calculations. Second, the chemical diversity 

of the training molecular dataset with regard to types of PAH heteroatoms and dimer structural 

variability was very limited. The focus of this work is to effectively address both of these 

issues. With regard to the first issue, we take advantage of the recently implemented [16] POD 

method [15] for reference electronic coupling calculations from DFT with atom-centered 

Gaussian-type orbitals (GTO). AOM is recast here to support the DFT FMO orbitals in a GTO 

basis as input for FMO reconstruction in a minimum Slater basis. As regards to the diversity 

of the chemical space covered by the AOM, we utilize the newly introduced HAB79 dataset 

[37] containing nitrogen, oxygen, fluorine, and sulfur heteroatoms. This database contains 79 

single molecules and 921 dimer configurations, providing a wealth of data for the 

reparametrization of key parameters of AOM (that is, Slater decay coefficients), hence enabling 

ultrafast electronic coupling calculation for a plethora of organic semiconductors found in 

state-of-the-art organic electronics and photovoltaics applications (e.g. non-fullerene 

acceptors).  

The revised AOM framework provides reparametrized optimal Slater decay 

coefficients for carbon and nitrogen chemical species and new parameters for oxygen, fluorine, 

and sulfur (oxygen and sulfur parameters in the original AOM implementation relied on 

unoptimized Clementi-Raimondi (C-R) reference values [38] and fluorine was not included). 

Using the new parametrization, a universal scaling constant satisfying the linear relationship 

between electronic coupling and overlap integrals is established and successfully tested on a 

molecular dataset taken from experimentally resolved molecular crystal structures.  
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The layout of the paper is organized follows: all computational details are outlined in 

Sec. II, followed by the results in Sec. III. The conclusions of this study are presented in Sec. 

IV. 

 

II. Computational details 

 

The AOM asserts that the electronic coupling 𝐻ab between two non-orthogonal diabatic 

charge transfer electronic states, Ψa and Ψb, is, to a good approximation, proportional to the 

overlap integral 𝑆ab between the two states, thus satisfying the linear relationship 

|𝐻ab| 𝐶|𝑆ab|   (1) 

where 

𝑆ab ⟨Ψa|Ψb⟩  (2) 

We note that a similar relation is used in Hückel theory to approximate the resonance integral. 

The difference is that in the latter the resonance integral refers to the electronic interaction of 

atomic orbitals centered at neighboring atoms on the same molecule, whereas in AOM the 

coupling matrix element is between two diabatic wavefunctions centered on neighboring 

molecules. 

In most methods for coupling matrix element calculation, including POD, the two 

wavefunctions Ψa and Ψb are approximated by localized FMOs obtained by diabatization of a 

dimer electronic Hamiltonian (highest occupied FMOs on donor and acceptor for hole transfer 

and lowest unoccupied FMOs for excess electron transfer). These diabatized FMOs are very 

similar to the FMOs of the isolated molecules, the highest occupied electronic orbitals 

(HOMO) or lowest unoccupied molecular orbitals (LUMO), but not identical with them due to 

donor-acceptor interactions in the dimer Hamiltonian (if included) and the presence of 

orthogonalization tails. Hence, if the (non-orthogonal) FMOs of the isolated donor and acceptor 

are used for the calculation of Sab, as is done in this work, “a” and “b” on the left- and right-

hand side of Eq. 1 refer to slightly different orbitals. In practice, this is not a problem because 

any such differences are absorbed in the C constant.   

In the following we present explicit expressions of the FMOs in terms of an optimized 

minimal Slater basis set that allows for an ultrafast calculation of overlap, and of electronic 

coupling via Eq. 1. The FMOs of donor and acceptor are initially resolved by means of DFT 

calculations on the isolated molecules using an atom-centered GTO basis set. For instance, the 

HOMO of the donor molecule, |𝜙′D⟩ (notation as in Ref. [23]), is expressed as 
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|𝜙′D⟩ ∑ 𝑑 |𝜓 ⟩,GTO   (3) 

where 

|𝜓 ⟩ 𝜓 𝛼; 𝑟
⁄ ! ! !

! ! !
𝑥 𝑦 𝑧 exp 𝛼𝑟   (4) 

is a primitive GTO in its cartesian form and 𝑁GTO the number of GTO basis functions. Similar 

expansions are made for the HOMO of the acceptor or for the LUMO of donor and acceptor in 

case of excess electron transfer.  The FMO is subsequently projected into a STO basis set only 

with s- and p-type angular momentum contributions: 

|𝜙′D⟩ 𝜙′D ∑ 𝑐 |𝜒 ⟩STO   (5) 

where 𝑁STO the number of STO basis functions and 

|𝜒 ⟩ 𝜒 𝜇; 𝑟 𝑅 𝜇; 𝑟 𝑌 𝜃,𝜑  (6) 

with 𝑅 𝜇; 𝑟  the radial part of the STO orbital: 

𝑅 𝜇; 𝑟
⁄

!
𝑟 exp 𝜇𝑟   (7) 

and 𝑌 𝜃,𝜑  an orthonormal real spherical harmonic: 

𝑌 𝜃,𝜑 1
| | !

| | !
𝑃| | cos 𝜃

√2 cos 𝑚𝜑 𝑚 0
1 𝑚 0

√2 sin |𝑚|𝜑 𝑚 0
  (8) 

The GTO-to-STO FMO projection is effectively reduced to the solution of the 

following linear system of equations 

∑ 𝑑 𝜒 𝜓GTO ∑ 𝑐 𝜒 𝜒STO ,∀𝑗 ∈ 1,𝑁STO   (9) 

For the sake of computational simplicity and efficiency, STO-GTO overlap integrals 𝜒 𝜓   

are calculated using the Gaussian expansion method by O-ohata et al. [39] using expansions of 

10, 6, and 8 GTOs for 1s and 2s, 2p, 3s and 3p STO orbitals, respectively. 

Defining the projection completeness as 

𝑝 𝜇 𝜙′D 𝜙′D ,  (10) 

the set of STO exponential coefficients 𝜇  per chemical species and angular momentum 

channel is chosen so as to maximize 𝑝 𝜇 1. In order to achieve an augmented level of 

chemical diversity, the projection completeness optimization procedure with respect to 𝜇  is 

carried out considering an ensemble of 𝑁mol different molecules. To this end, we define a GTO-

to-STO projection goodness metric function 

𝑝M 𝜇 mean 𝑝 1 var 𝑝    (11) 
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where mean 𝑝
mol
∑ 𝑝mol  and var 𝑝

mol
∑ 𝑝 mean 𝑝mol . Due to the intricate 

nature of the multidimensional objective function 𝑝M 𝜇 , the minimization procedure is 

carried out by means of a derivative-free Nelder-Mead simplex optimization algorithm [40]. 

Using the optimized 𝜇  Slater decay coefficients, we can arrive at a set of 𝑐  expansion 

coefficients for every isolated molecule under study, thus concluding the GTO-to-STO 

projection procedure. 

The expansion of the FMOs, Eq. 5, can be simplified further. The FMOs of pi-

conjugated organic molecules are usually formed of linear combinations of p orbitals pointing 

in the direction perpendicular to the plane of pi-conjugation. Hence, we project the Slater p 

orbitals of each atom i participating in pi-conjugation on p-orbitals orthogonal to the plane, 

𝑝 , , and on two p-orbitals parallel to the plane, 𝑝 ,  and 𝑝 , . As shown before, the expansion 

coefficients of the 𝑝  orbitals and s orbitals can be neglected to a very good approximation 

[23]. Hence the expansion Eq. 5 simplifies to,  

𝜙′D 𝜙′ ∑ 𝑐 , 𝑝 ,
STO    (12) 

A similar projection is carried out for the HOMO of the acceptor. After renormalization, these 

orbitals are then used to calculate the overlap in an optimal, minimalistic representation of the 

FMOs,  

                                                 |𝑆ab|  |𝑆a̅b| 𝜙′D 𝜙′A . (13) 

The AOM estimate for electronic coupling is then, 

|𝐻ab| �̅�|𝑆a̅b|  (14) 

where �̅� is a constant of proportion obtained by a linear fit of |𝑆a̅b| to |𝐻ab| values from POD 

DFT reference calculations.  Given a set of dimeric configurations, in order to obtain optimal 

linear correlation between reference electronic coupling values |𝐻ab| and AOM calculated 

overlap integrals |𝑆a̅b|, a further tuning of the 2p and 3p STO exponential coefficients �̅�  per 

chemical species is required. This optimization is carried out using the Nelder-Mead simplex 

algorithm, aiming to minimize the sum of squared residuals during a least-squares linear fit 

between |𝐻ab| and  |𝑆a̅b| in a logarithmic scale, effectively calculating the intercept 𝐶′ log �̅�  

and minimizing the residual in equation 

log|𝐻ab| 𝐶′ log|𝑆a̅b|. (15) 
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As regards technical details of DFT single molecule calculations, FMOs of isolated 

molecules are calculated at the PBE/DZVP-GTH minimal level of theory [41, 42]. Electronic 

couplings from scaled POD (sPOD) calculations at the PBE/DZVP-GTH level of theory were 

taken from the HAB79 dataset [37]. The POD couplings were scaled by a factor of 1.282, as 

dictated by the correlation analysis using reference ab-initio values at the minimal active space 

CASSCF/NEVPT2 level of theory, corresponding to a mean relative signed error of -3.3% and 

a mean relative unsigned error of 17.9% [37]. All DFT calculations are carried out using the 

CP2K package [43]. 

 

III. Results and discussion 

 

The training of the revised AOM scheme in this work is carried out using the newly 

introduced HAB79 dataset: a selection of planar heterocyclic PAHs with non-degenerate 

FMOs, containing nitrogen, oxygen, fluorine, and sulfur heteroatoms with significant 

contribution to the electronic density, and capable of either n- or p-type semiconducting 

behavior [37]. 

The first step in the training procedure is dedicated to isolated molecules and aims at 

the determination of the optimal STO decay exponents 𝜇  for atomic species and orbital type 

and molecule-specific expansion coefficients 𝑐 , both optimizing the statistical distribution 

of the GTO-to-STO projection completeness value via the metric described in Eq. 11, with the 

STO decay exponents explicitly treated during the optimization procedure and the expansion 

coefficients derived via the solution of Eq. 9 for every 𝜇  set. We have carried out two types 

of computational procedures for 𝜇 . In the first procedure we group the HAB79 molecules in 

subsets that contain the same atom types actively participating to the FMO density and examine 

the landscape of the goodness metric of Eq. 11 by means of 2D 𝜇  grid evaluations. Doing 

so, we validate the global minima resolved by the Nelder-Mead simplex optimization on 

selected lower dimensional 2D grids. In the second procedure we carry out a simultaneous 

multi-dimensional optimization of 𝜇  for all molecules of HAB79.  

  In the first procedure, the HAB79 dataset is divided into 5 subsets, as depicted in Fig. 

1, 2, and 3. Molecules 1-14 correspond to heterocyclic PAHs with nitrogen heteroatoms having 

significant FMO density contribution. In the same fashion, molecules 15-23, 24-30, and 31-53 

bear oxygen, fluorine, and sulfur heteroatoms with sizable contribution to the electronic 
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density. Finally, molecules 54-79 have multiple heteroatom contributions to the FMOs and are 

excluded from the 2D landscape analysis of the projection goodness metric. 

 

 

Fig. 1. Nitrogen- and oxygen-based PAHs with significant heteroatom FMO density 

contribution. Molecules 1-11 and 15 are treated as hole conductors whereas 12-14 and 16-23 

as electron conductors. 
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Fig. 2. Fluorine and sulfur-based PAHs with significant heteroatom FMO density 

contribution. Molecules 24, 25 and 31-52 are treated as hole conductors whereas 26-30 and 

53 as electron conductors. 
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Fig. 3. PAH molecules with multi-heteroatom FMO density contributions. Molecules 54-63 

are treated as hole conductors whereas 64-79 as electron conductors. 

 

Considering the cases of X-based PAHs, where X corresponds to a N, O, F, or S heteroatom, 

the projection goodness metric is evaluated on a grid of 𝜇C,𝜇X  STO exponents. This 

procedure returns unimodal surfaces with a distinctive global minimum, indicating the 

existence of a unique set of decay exponents that can minimize the projection goodness metric. 

The contour diagrams of the projection goodness metric, along with projection 

completeness histograms utilizing the C-R and optimized STO exponential coefficients for the 

aforementioned HAB79 subsets are depicted in Fig. 4 and Fig. 5. As a reminder, the C-R 

coefficients were obtained by Clementi and Raimondi [38] by means of SCF single atom 
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calculations for the expression of atomic orbitals using a STO basis set – hence may not be 

optimal for our purpose. In our previous work [23], the C-R coefficients were used for oxygen 

and sulfur as the optimization of these coefficients was not possible due to a lack of molecules 

in the previously used training set with significant contributions to the FMO density on these 

atom types. The optimization procedure clearly shifts all projection completeness distributions 

towards unity, and reduces the standard deviation relative to C-R. 

In the second procedure, a simultaneous minimization using the complete HAB79 

dataset (molecules 1-79) is carried out by means of a Nelder-Mead simplex, resulting in the 

optimized values reported in Table I. 

The performance of the Nelder-Mead derivative-free optimization procedure in 

minimizing the projection goodness metric objective function is illustrated in Fig. 6. Using the 

C-R STO exponential decay coefficients as a reference, the new set of optimized 𝜇  

parameters correspond to a more complete GTO-to-STO projection, exhibiting tighter 

distributions closer to 1.0. In what follows below we use the set of 𝜇  values from the Nelder-

Mead simplex optimization procedure. 

 

Table I. Optimized STO decay exponential coefficients from simultaneous optimization using 

the Nelder-Mead simplex method (second procedure, see main text; 2p for N, O, and F 

heteroatoms and 3p for S). Literature values are also listed for comparison. All values are 

expressed in Bohr radii. 

 C N O F S 

This work; projection 𝜇  1.4427 1.6467 1.8588 2.1364 1.6517 

This work; AOM �̅�  1.3856 1.6171 1.5051 1.6652 1.6411 

Gajdos et al*; projection 𝜇  1.3120 1.7000 2.2266 N/A 1.8273 

Gajdos et al*; AOM �̅�  1.0000 1.5000 2.2266 N/A 1.8273 

C-R† 1.5679 1.9170 2.2266 2.5500 1.8273 

* : Ref. [23] 
† : Ref. [38] 
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Fig. 4. (a, d) Projection goodness metric contour diagrams on a two-dimensional STO orbital 

exponents grid, along with projection completeness histograms based on (b, e) unoptimized 

C-R and (c, f) simplex-optimized STO orbital exponents (first procedure, see main text). The 

highlighted points are the metric minima resolved by the Nelder-Mead optimization 

procedure (second procedure, see main text). Diagrams (a-c) correspond to nitrogen-based 

PAHs 1-14 while (d-f) to oxygen-based PAHs 15-23, as depicted in Fig. 1. 
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Fig. 5. (a, d) Projection goodness metric contour diagrams on a two-dimensional STO orbital 

exponents grid, along with projection completeness histograms based on (b, e) unoptimized 

C-R and (c, f) simplex-optimized STO orbital exponents (first procedure, see main text). The 

highlighted points are the metric minima resolved by the Nelder-Mead optimization 

procedure (second procedure, see main text). Diagrams (a-c) correspond to fluorine-based 

PAHs 24-30 while (d-f) to sulfur-based PAHs 31-53, as depicted in Fig. 2. 

 

 

Fig. 6. (a) Projection completeness distribution diagrams of the full HAB79 dataset (molecule 

1-79) when utilizing the original C-R and the Nelder-Mead optimized (second procedure; see 
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main text) STO orbital exponents. Panels (b) and (c) depict the HOMO/LUMO 

decomposition of the distributions. 

 

 After the calculation of the STO decay coefficients 𝜇  reported in Table I that 

optimize the projection procedure, we arrive at a set of STO-based FMO expansion coefficients 

𝑐  for every molecule in the dataset. Previous work has shown that the set of 𝜇  coefficients 

derived from the projection part of this particular methodology cannot fully account for a 

sufficient linear relationship between overlap and electronic coupling values [23]. This is also 

the case for the current work, as demonstrated by the correlation plots depicted in Fig. 7. 

 

 

Fig. 7. Correlation diagrams between sPOD electronic couplings and AOM overlap values 

using (a) the C-R STO orbital exponents and (b) the exponents from the single molecule 

Nelder-Mean simplex projection optimization procedure for the calculation of the overlap. 

 

As in Ref. [23], we introduce a second set of STO decay coefficients �̅�  to optimize 

the linear correlation between electronic coupling and overlap, while retaining the optimized 

expansion coefficients 𝑐  obtained from the GTO-to-STO projection with optimized decay 

coefficients 𝜇 . Due to the complexity of the optimization problem at hand, we utilize a 

Nelder-Mead simplex algorithm aiming to minimize the sum of squared residuals during a 

least-squares linear fit of log|𝐻ab| versus log|𝑆a̅b| according to Eq. 15. The set �̅�  reported in 

Table I corresponds to the global minimum attained by the simplex optimization procedure. 

Contour plots of the residual objective function calculated on two-dimensional grids of STO 

decay coefficients for HAB79 subsets are illustrated in Fig. 8, along with the simplex-derived 

global minimum position. The optimal linear correlation using the set �̅�  between overlap 

and charge coupling is shown in Fig. 9 with a universal scaling constant �̅� equal to 9463 meV. 

We find that that the linear correlation is excellent for large coupling values (> 100 meV) and 
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still rather good for values down to about 10 meV, while we notice a significant spread for 

smaller coupling values. 

 

 

Fig. 8. Overlap-electronic coupling linear correlation metric contour diagrams on a two-

dimensional AOM STO orbital exponents grid for (a) nitrogen, (b) oxygen, (c) fluorine, and 

(d) sulfur containing PAHs. The highlighted points are the metric minima for the set �̅�  

obtained by the Nelder-Mead simplex optimization procedure. 
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Fig. 9. Correlation between scaled POD electronic couplings and AOM overlap values using 

the set �̅�  for the calculation of the overlap and the set 𝜇  for the GTO-to-STO FMO 

projection in (a) linear and (b) logarithmic scale.  

 

 The reparametrization of the AOM based on the HAB79 dataset is tested against a set 

of 30 sulfur-based PAHs. The testing molecular set contains 7 molecules already present in the 

training HAB79 dataset, namely molecules 31, 32, 38, 40, 41, 42, and 48. The molecules on 

the test dataset not belonging to the training set are depicted in Fig. 10.  

 

 

Fig. 10. Performance of the reparametrized AOM on a test set of 30 sulfur-containing PAHs. 

(a) Projection completeness histogram for molecules 80-102, not belonging to the AOM 
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training set. Correlation of AOM estimated and POD calculated charge transfer integrals in 

(b) linear and (c) logarithmic scale. 

 

The Cambridge Crystallographic Data Centre (CCDC) deposition numbers for all compounds 

in the testing dataset are listed in the supplementary material [44]. It should be noted that, 

although consisting of a smaller number of configurations compared to the training set, the 

testing set constitutes a quite challenging benchmark, since it contains dimeric structures taken 

directly from experimentally resolved structures that are not present in the training set. 

 As a first test at the single molecule level of description, the GTO-to-STO projection 

completeness is evaluated for all 23 test molecules not belonging to the training dataset. The 

statistical distribution of these values using the optimized parameters 𝜇  from Table I is 

plotted in Fig. 10. All except 1 fall in the range obtained for the training set 0.97-0.99, showing 

excellent transferability of 𝜇  to sulfur-containing PAH outside the training set.  

 Moving on to molecular dimers, a set of test configurations of dimers is extracted from 

the experimentally-resolved molecular crystal structures reported in the CCDC records for the 

testing dataset. In order to keep dimers with significant charge transfer characteristics, scaled 

POD coupling calculations at the PBE/DZVP-GTH level of theory are carried out for all dimers 

having a center-of-mass separation smaller than 1.5 nm, discarding dimers with charge 

coupling values smaller than 0.1 meV. As a result, we obtain 233 dimer configurations.  

 The correlation between AOM and scaled POD coupling values is shown in Fig. 10, 

with the values of the dimers of the 23 test molecules not present in the training set depicted 

using square symbols and the 7 molecules belonging to the training set (but in different dimer 

configurations than in the HAB79 dataset) depicted using circles. The linear fitting procedure 

results in a slope of 0.99, thus perfectly correlating the AOM electronic coupling estimate with 

the reference sPOD DFT calculations. As for the training set, the agreement with reference 

sPOD couplings is excellent for couplings larger than 10 meV. For lower values, AOM 

underestimates sPOD couplings by up to an order of magnitude. The results on the training 

data (Fig. 9) suggest that the underestimation of small coupling values is not a systematic 

feature of AOM but specific to the molecules in the testing set.   

 Finally, a statistical error analysis is carried out on AOM electronic coupling values, 

calculating the mean unsigned error (MUE), mean relative signed error (MRSE), mean relative 

unsigned error (MRUE), and maximum absolute error (MAX). The results of this analysis are 

summarized in Table II using scaled POD and ab-initio values for the HAB79 dataset.  
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Table II. Statistical error analysis on AOM electronic couplings for the training and testing 

datasets.  

Dataset Reference MUE (meV) MRSE (%) MRUE (%) MAX 

(meV) 

HAB79 sPOD 12.4 11.2 44.0 114.4 

HAB79 ab-initio* 17.8 -8.4 36.6 182.5 

Testing sPOD 4.4 -10.5 32.4 49.1 

* : Ref. [37] 

 

The MRUE of AOM relative to sPOD is reasonable considering that this is an average 

error over electronic couplings that span 5-6 orders of magnitude. A further breakdown of the 

AOM error for each order of magnitude of reference sPOD coupling is summarized in Table 

III. As apparent from Fig. 7, the MRUE for couplings larger than 100 meV is very small, 8.5%, 

and still reasonably small for couplings between 10-100 meV, 24.7%. For couplings smaller 

than 10 meV, AOM appears to be less reliable. However, we would like to point out that also 

for DFT electronic structure calculations it becomes increasingly challenging to accurately 

calculate small electronic coupling values and converge them with respect to basis set and grid 

size, so some of the error could derive from inaccuracies of the reference calculations. 

Fortunately, the electronic couplings that determine transport in organic (opto-)electronic 

materials are typically on the order of 10-200 meV, which is the regime that is very well 

captured by the present AOM parametrization. 

 

Table III. Interval statistical error analysis on AOM electronic couplings for the training 

dataset with respect to sPOD electronic coupling reference values.  

sPOD Hab interval (meV) MUE (meV) MRSE (%) MRUE (%) MAX (meV) 

(0, 1] 0.7 299.8 357.5 12.9 

(1, 10] 3.9 24.0 69.3 27.0 

(10, 100] 12.2 -13.2 24.7 94.4 

(100, 1000] 18.3 -4.8 8.5 114.4 

 

The fact that the MRUE of AOM relative to ab-initio couplings is smaller than relative 

to sPOD is most likely a coincidence. The small statistical deviations reported for the sulfur-
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based PAH testing dataset constitute a promising feature as regards the predictive capabilities 

of AOM calculations. 

 

IV. Conclusions 

 

In this work we have reparametrized the analytic overlap method (AOM) for ultrafast 

electronic coupling calculation, we extended the parametrization to heteroatoms commonly 

found in semiconducting organic molecules, namely nitrogen, oxygen, fluorine and sulfur, and 

we made AOM compatible with DFT electronic coupling calculations that employ Gaussian-

type basis sets. The original AOM implementation relied on unoptimized values for oxygen 

and sulfur, taken directly from the work of Clementi and Raimondi [38], and a parametrized 

value for nitrogen based only on the pyrrole molecule; hence the need for (re)parametrization 

in this work. The good linear correlation between frontier orbital overlap and DFT electronic 

coupling that we reported in our first paper [23] is retained for the much larger and more diverse 

database investigated in this work. The couplings of the vast majority of the 921 dimers 

investigated here can be well described by a single linear fit, i.e. by a single constant �̅�.  The 

transferability of the revised parametrization was tested on a set of application relevant sulfur-

containing PAHs that was not included in the parametrization. The error was not larger (in fact, 

smaller) than for the training set, which makes us confident that transferability is a general 

feature of AOM. 

The major advantage of AOM is the sheer speed with which electronic couplings can 

be estimated as it requires only the analytic evaluation of overlap integrals using a small 

number of Slater type orbitals. One AOM coupling calculation on a dimer of a 152-atom 

molecule (e.g. a porphyrin dimer) typically takes 14 milliseconds on a single compute core, 

whereas the explicit POD electronic coupling calculations takes 527 seconds on 144 cores 

(Intel Xeon CPU E5-2630 v3 @ 2.40GHz), a speed-up of a factor of 104-105 and a saving in 

computing resources of a factor of 100.  

The error of AOM, while reasonably small given the large chemical space and range of 

coupling values covered, can be reduced by parametrizing the linear relation, i.e. the �̅�  

constant, specifically for a given molecule in question. This usually requires only a small 

number of dimer configurations, typically not more than a few tens [34, 35]. Another approach 

to reduce the error, which could be investigated in future work, is to use state-of-the-art 

machine learning methods (ML) to estimate and correct the error between AOM and DFT 
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coupling estimates (ΔML). Compared to ML methods, AOM has the advantage that it already 

knows the complicated nodal shape of the FMOs, which determines electronic coupling, so 

this important feature no longer needs to learned. Hence, we expect that ΔML will need a much 

smaller number of reference data than ML models alone. 

The AOM reparametrization procedure employed here is based on a well-defined 

derivative-free optimization scheme, the Nelder-Mead simplex method, and an appropriate 

choice of the objective functions. As a result, the method can be easily extended to cover 

additional application-relevant heteroatoms, such as other peripheral halogen atoms or PAH 

core boron, phosphorus, and heavy chalcogen additions – provided the existence and curation 

of appropriate training molecular datasets. 

Finally, the new code for GTO-to-STO projection and for calculation of AOM 

electronic couplings is publicly available at https://github.com/oziogos/pyAOMlite, along with 

all reference single molecule and dimer information needed to validate the results presented in 

this work. 

 

Supplementary material 

 

Refer to the supplementary material for a full list of CCDC deposition numbers for all 

molecules belonging to the AOM sulfur-based PAH testing set. 
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