191 research outputs found

    Gravitational cubic interactions for a massive mixed symmetry gauge field

    Full text link
    In a recent paper arXiv:1107.1872 cubic gravitational interactions for a massless mixed symmetry field in AdS space have been constructed. In the current paper we extend these results to the case of massive field. We work in a Fradkin-Vasiliev approach and use frame-like gauge invariant description for massive field which works in (A)dS spaces with arbitrary values of cosmological constant including flat Minkowski space. In this, massless limit in AdS space coincides with the results of arXiv:1107.1872 while we show that it is impossible to switch on gravitational interaction for massless field in dS space.Comment: 13 page

    Comparison of repulsive interatomic potentials calculated with an all-electron DFT approach with experimental data

    Get PDF
    The interatomic potential determines the nuclear stopping power in materials. Most ion irradiation simulation models are based on the universal-Ziegler-Biersack-Littmark (ZBL) potential (Ziegler et a1.,1983), which, however, is an average and hence may not describe the stopping of all ion-material combinations well. Here we consider pair-specific interatomic potentials determined experimentally and by density functional theory simulations with DMol approach (DMol software, 1997) to choose basic wave functions. The interatomic potentials calculated using the DMol approach demonstrate an unexpectedly good agreement with experimental data. Differences are mainly observed for heavy atom systems, which suggests they can be improved by extending a basis set and more accurately considering the relativistic effects. Experimental data prove that the approach of determining interatomic potentials from quasielastic scattering can be successfully used for modeling collision cascades in ion-solids collisions. The data obtained clearly indicate that the use of any universal potential is limited to internuclear distances R <7 a(f) (a(f) is the Firsov length). (C) 2017 Published by Elsevier B.V.Peer reviewe

    On gravitational interactions for massive higher spins in AdS3AdS_3

    Full text link
    In this paper we investigate gravitational interactions of massive higher spin fields in three dimensional AdSAdS space with arbitrary value of cosmological constant including flat Minkowski space. We use frame-like gauge description for such massive fields adopted to three-dimensional case. At first, we carefully analyze the procedure of switching on gravitational interactions in the linear approximation on the example of massive spin-3 field and then proceed with the generalization to the case of arbitrary integer spin field. As a result we construct a cubic interaction vertex linear in spin-2 field and quadratic in higher spin field on AdS3AdS_3 background. As in the massless case the vertex does not contain any higher derivative corrections to the Lagrangian and/or gauge transformations. Thus, even after switching on gravitational interactions, one can freely consider any massless or partially massless limits as well as the flat one.Comment: 21 pages. Some clarifications and 1 new reference added. Version to appear in the J.Phys.A special volume on "Higher Spin Theories and AdS/CFT" edited by Matthias Gaberdiel and Mikhail Vasilie

    On electromagnetic interactions for massive mixed symmetry field

    Full text link
    In this paper we investigate electromagnetic interactions for simplest massive mixed symmetry field. Using frame-like gauge invariant formulation we extend Fradkin-Vasiliev procedure, initially proposed for investigation of gravitational interactions for massless particles in AdS space, to the case of electromagnetic interactions for massive particles leaving in (A)dS space with arbitrary value of cosmological constant including flat Minkowski space. At first, as an illustration of general procedure, we re-derive our previous results on massive spin 2 electromagnetic interactions and then we apply this procedure to massive mixed symmetry field. These two cases are just the simplest representatives of two general class of fields, namely completely symmetric and mixed symmetry ones, and it is clear that the results obtained admit straightforward generalization to higher spins as well.Comment: 17 pages. Some clarifications added. Version to appear in JHE

    Spin 3 cubic vertices in a frame-like formalism

    Full text link
    Till now most of the results on interaction vertices for massless higher spin fields were obtained in a metric-like formalism using completely symmetric (spin-)tensors. In this, the Lagrangians turn out to be very complicated and the main reason is that the higher the spin one want to consider the more derivatives one has to introduce. In this paper we show that such investigations can be greatly simplified if one works in a frame-like formalism. As an illustration we consider massless spin 3 particle and reconstruct a number of vertices describing its interactions with lower spin 2, 1 and 0 ones. In all cases considered we give explicit expressions for the Lagrangians and gauge transformations and check that the algebra of gauge transformations is indeed closed.Comment: 17 pades, no figure

    Mixed-symmetry massive fields in AdS(5)

    Full text link
    Free mixed-symmetry arbitrary spin massive bosonic and fermionic fields propagating in AdS(5) are investigated. Using the light-cone formulation of relativistic dynamics we study bosonic and fermionic fields on an equal footing. Light-cone gauge actions for such fields are constructed. Various limits of the actions are discussed.Comment: v3: 24 pages, LaTeX-2e; typos corrected, footnote 7 and 2 references added, published in Class. Quantum Gra

    BRST approach to Lagrangian formulation for mixed-symmetry fermionic higher-spin fields

    Full text link
    We construct a Lagrangian description of irreducible half-integer higher-spin representations of the Poincare group with the corresponding Young tableaux having two rows, on a basis of the BRST approach. Starting with a description of fermionic higher-spin fields in a flat space of any dimension in terms of an auxiliary Fock space, we realize a conversion of the initial operator constraint system (constructed with respect to the relations extracting irreducible Poincare-group representations) into a first-class constraint system. For this purpose, we find auxiliary representations of the constraint subsuperalgebra containing the subsystem of second-class constraints in terms of Verma modules. We propose a universal procedure of constructing gauge-invariant Lagrangians with reducible gauge symmetries describing the dynamics of both massless and massive fermionic fields of any spin. No off-shell constraints for the fields and gauge parameters are used from the very beginning. It is shown that the space of BRST cohomologies with a vanishing ghost number is determined only by the constraints corresponding to an irreducible Poincare-group representation. To illustrate the general construction, we obtain a Lagrangian description of fermionic fields with generalized spin (3/2,1/2) and (3/2,3/2) on a flat background containing the complete set of auxiliary fields and gauge symmetries.Comment: 41 pages, no figures, corrected typos, updated introduction, sections 5, 7.1, 7.2 with examples, conclusion with all basic results unchanged, corrected formulae (3.27), (7.138), (7.140), added dimensional reduction part with formulae (5.34)-(5.48), (7.8)-(7.10), (7.131)-(7.136), (7.143)-(7.164), added Refs. 52, 53, 54, examples for massive fields developed by 2 way

    Dual Linearised Gravity in Arbitrary Dimensions

    Full text link
    We construct dual formulation of linearised gravity in first order tetrad formalism in arbitrary dimensions within the path integral framework following the standard duality algorithm making use of the global shift symmetry of the tetrad field. The dual partition function is in terms of the (mixed symmetric) tensor field Φ[ν1ν2...νd3]ν\Phi_{[\nu_{1}\nu_{2}...\nu_{d-3}]\nu} in {\it frame-like} formulation. We obtain in d-dimensions the dual Lagrangian in a closed form in terms of field strength of the dual frame-like field. Next by coupling a source with the (linear) Riemann tensor in d-dimensions, dual generating functional is obtained. Using this an operator mapping between (linear) Riemann tensor and Riemann tensor corresponding to the dual field is derived and we also discuss the exchange of equations of motion and Bianchi identity.Comment: 14 pages, typos corrected, Published version: Class. Quantum Grav. 22(2005)538

    Reflection of hydrogen and deuterium atoms from the beryllium, carbon, tungsten surfaces

    Get PDF
    Particle reflection coefficients for scattering of hydrogen and deuterium atoms from amorphous beryllium, carbon and tungsten were obtained, which are of interest for thermonuclear reactor physics. For the case of deuterium scattering from tungsten the data were also calculated for polycrystalline and crystalline target. The calculations were carried out by two methods: by modeling the trajectories of the incident particles and by using the binary collision approximation. Interaction potentials between hydrogen and helium atoms and the selected materials were calculated in the scope of the density function theory using program DMol for choosing wave functions. The dependence of the reflection coefficient RN on the potential well depth was found. The results demonstrate a good agreement with the available experimental values.Peer reviewe
    corecore