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The interatomic potential determines the nuclear stopping power in materials. Most ion 

irradiation simulation models are based on the universal ZBL interatomic potential, which, 

however, is an average and hence may not describe the stopping of all ion-material 

combinations well. Here we consider pair-specific interatomic potentials determined 

experimentally and by density-functional theory simulations with the DMol approach using 

numerical, all-electron basis sets. The interatomic potentials calculated using the DMol 

approach demonstrate an unexpectedly good agreement with experimental data. Differences 

are mainly observed for heavy atom systems, which suggests they can be improved by 

extending a basis set and more accurately considering the relativistic effects. Experimental data 

prove that the approach of determining interatomic potentials from quasielastic scattering can 

be successfully used for modeling collision cascades in ion-solids collisions. The data obtained 

clearly indicate that the use of any universal potential is limited to internuclear distances R < 7 

af  (af is the Firsov length). 

 

1. Introduction.  

Repulsive interatomic potentials are widely used in plasma physics, astrophysics, surface 

diagnostics by different types of ion scattering methods, and modeling particle passage 

through matter. Binary collision approximation and molecular dynamic computer simulations 

are widely used to describe various types of collision cascades, and the results of such 

simulations are very sensitive to the choice of the repulsive potential model. This highlights 
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the importance of being able to determine interatomic potentials accurately either from theory 

or experiments. Experimental interatomic potential for large interatomic distances were for 

the first time determined by Amdur and coworkers [1-4, for a review see Ref. 5]. Later 

important additional contributions were made by Leonas et al. [6], whose measurements 

provided information on smaller interatomic distances.  

The data on the repulsive interaction potentials for close collisions, when the inner shells 

of colliding atomic particles are involved in the interaction, were obtained in experiments 

performed by Lane and Everhart [7]. The data processing method proposed by Firsov [8] was 

for the first time used to obtain the potential values directly from measurements of angular 

dependence of the scattering cross section.  

Later [9] peculiarities in scattering cross-sections were observed, which correlated 

with inner-shell electron-state vacancy formation in the collisions under study. The model of 

crossing energy bands was proposed in [10] to explain quantitatively the source of the 

peculiarities.  In Ref. [10] a conclusion concerning the applicability of the model of one-

channel or “quasi-elastic” potential for describing scattering of particles with energies of 12–

300 keV was also made. The best conformity was obtained with the potential proposed by 

Csavinszky [11]. Later, systematic measurements of the scattering cross-sections were 

performed by Loftager and coworkers [12-14]. They also concluded that the measured cross-

sections can be fairly well reproduced using the Jensen potential [15] with adjusted 

parameters, in spite of the fact that inelastic energy losses also occur during the collisions 

under study. 

 Many different theoretical methods have been applied to determine potential 

parameters ab initio [14,16-24]. Perhaps the most used potential was the “universal potential“ 

proposed by Ziegler, Biersack and Littmark [17] (hereinafter referred to as the ZBL potential). 

This potential was obtained by performing an averaging fit to the results of Thomas-Fermi 
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quantum mechanical potential calculations for a large number of systems. The standard 

deviation of this fit was 18% of the calculated individual potentials [17]. 

Various theoretical types of potentials were compared in [25] with the set of experimental 

data on potentials available at that time and obtained mainly for moderate values of collision 

energy. The authors concluded that the ZBL potential can be applied with relatively high 

accuracy. Nevertheless, other types of potential (e.g., the Moliere potential [26] and Jensen 

potential [15]) were used more or less successfully even after publication of paper [25]. Later, 

more accurate data on the potentials were obtained by the Firsov's method for many ion-atom 

systems from scattering cross-section measurements [27]. It was shown that the ZBL potential 

must be improved, and a different functional form was proposed as the best fit of existing 

experimental data. The results also showed [27]  that the range of interatomic distances where 

any universal potential form can be used is restricted to distances less then 7 af  (here af is the 

Firsov's screening length, see below). Later a model of an individual potential was proposed 

to extend the application area to larger interatomic distances [28]. However, errors in the 

cases when experimental data are unavailable exceed 15%. 

To solve this problem, a set of fully ab initio interatomic potential calculations were 

carried out in Ref. [29], where potentials were calculated using density-functional theory 

method with Dmol approach for choosing basis wave functions. Although these potentials 

have been widely used in ion range calculations that were compared to experiments (e.g. Refs. 

[30-32]), no direct comparison with scattering experiments has been made.  

The aim of this paper is to compare the DMol calculations with experimental data and 

widely used analytical formulae for the repulsive potentials. 

 

2. Experimental data on interaction potentials and data processing 

Prior to comparing theoretical calculations and measurements, one should characterize the 

quality of available experimental data and errors of experiments of different types. First, note 
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that particles in collisions may be excited and ionized. When particles with kinetic energies of 

several tens of keV|’s collide, formation of electron state vacancies in the atom inner shells 

takes place with additional ionization of the collision partners due to Auger decay of those 

vacancies. In this case, it is necessary to take into account that scattering is of multichannel 

character. This is especially important in collisions of light atoms (hydrogen, helium) when 

ionization or electron capture drastically change the potential curve. Nevertheless, since the 

inelastic energy losses (including those for ionization) are typically not higher than 6% of the 

potential at the trajectory turning point, the scattering may be regarded as quasi-elastic, and 

described via a potential corresponding to the mean inelastic energy loss.  

The possibility of using the single-channel potential in describing the scattering process may 

be checked by comparing data on differential particle scattering cross-sections measured at 

various initial energies. For convenience, the data on scattering cross-sections at various collision 

energies are compared in reduced coordinates:  ρ= Θ dσ/dΩ sinΘ and τ = Ecm  Θ, where Ecm  and 

Θ are the collision energy and scattering angle in the center-of-mass system. If the potential is 

invariant of the particle collision energy, the data in these coordinates may be represented by a 

common curve independently of the collision energy. Fig. 1 presents data for systems Xe+- Xe, 

Ar+- Ar and Ne+-Ne [12-14] in the reduced coordinates. The figure demonstrates that the 

scattering cross-section – collision energy dependences are not smooth. There are maxima caused 

by the multi-channel character of the scattering [6]. However, cross-sections at different collision 

energies differ by no more that 1-3% in the cases under consideration. 

To get information on the potential, we use the procedure proposed by Firsov [8]. First the 

function b(Θ) interrelating scattering angle Θ and impact parameter b will be calculated based on 

the measured cross-sections: 

 b(Θ) = {2 π∫
Θ dσ(Θ)/dΩ sinΘ dΘ }1/2 .                                                                   ( 1 ) 
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The inverse function Θ(b) can be easily obtained from b(Θ), and then, via the Firsov formula, 

the potential at the trajectory turning point Ro reachable at the impact parameter b will be 

calculated:  

 U(Ro)=Ecm (1 - exp ( - b ∫
∞

  Θ (b’) (b’2 – b2)-1/2 db )),   Ro = b (1- U(Ro)/Ecm )
-1/2  ( 2 ) 

An error in absolute cross-section values causes errors in the distance scale calibration for the 

impact parameter b and, therefore, for Ro, of 4%. The errors in relative measurements and angle 

determination affect the shape of the curve obtained. However, it is worth noting that, due to the 

integration with respect to Θ in calculating b(Θ), the cross-section measurements are being 

somewhat averaged and, thus, the effect of relative errors decreases to 1-5%. 

By using measurements obtained at different energies, it is possible to extend the angular 

range in the reduced coordinates where the cross-section is known. This will significantly reduce 

the methodological errors caused by the extrapolation, making them insignificant in a wide range 

of internuclear distances.  

In Amdur method [1-4]  the cross-section of particle scattering by the angle lower than the 

preset one was measured versus the collision energy. The potential shape is postulated: typically, 

this is a power-law or exponential dependence on the internuclear distance. Potential parameters 

were obtained by comparison the measurements and simulations using proposed potential form. 

The errors in the internuclear distance scale calibration were also determined by the accuracy of 

measuring the gas target density, and were typically about 10%. Methodological errors connected 

with the assumed shape of the potential curve are difficult to estimate. Nevertheless, these data 

will be used in comparing with calculations for large R. A number of experiments at intermediate 

internuclear distances were carried out by the Leonas [6] group using the Amdur method.   

 

       3. DMol calculations of interatomic potentials. 

In Ref. [29], a methodology was presented where repulsive potentials are calculated using 

the advanced Hartree-Fock-based and density-functional theory (DFT) methods. DFT method 
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was used to calculate the energy of the electron subsystem of dimer systems at chosen 

internuclear distances. .  The DMol method was chosen since it uses numerically determined 

basis sets that are not limited to the Gaussian shape. From the comparison of these completely 

different ab initio approaches, it was revealed that using the DMol software with optimization 

of all orbitals and addition of inner-shell hydrogenic orbitals to the basis sets enables 

calculating the potentials to better than 1% accuracy above 10 eV, at least for the light and 

medium-heavy atoms considered [29]. Based on these insights, a script was made that 

calculated the dimer pair potential for all ion pairs in the atomic number range 1 – 92 with the 

DMol97 software [33, 34]. Some of the calculations have been checked against the more 

recent DMol3 version of the software, showing good agreement. For all the atoms, the default 

orbital basis sets provided with the software were augmented with hydrogenic orbitals. For 

elements with the atomic number Z < 11 the hydrogenic orbitals were already part of the 

default DMol97 basis sets, and these were used. For elements with 10<Z<40, the hydrogenic 

orbitals of electron shells 1-4 were added, and also the hydrogenic orbitals of atoms with 

atomic number Z-1 (following the practice of the default orbitals for Z<11). For elements 

with 40<Z<55) hydrogenic orbitals for shells 1-5 were added for Z, and for shells 1-3 for Z-1. 

For elements with Z>=55 it was possible to add hydrogenic orbitals only for shells 1-3, since 

otherwise the maximum number of orbitals allowed by the software was exceeded. 

For each atom pair, the dimer energy was calculated for fixed atom coordinates at 

increasing distance intervals starting from the 0.002 Å interval below 0.1 Å and increasing to 

an interval of 1.0 Å between 4 and 10 Å. To get the distance at ''infinity'', also points at the 

100 Å and 1000 Å distances were calculated. The dimer energy at 1000 Å separation was 

used as a subtractive factor to normalize the pair potential to 0 Å at infinity. In total, 74 

distance points were used for each dimer pair, which was found to give a smooth description 

of the pair interaction. The results of our calculations for 19 dimer systems are presented in 
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the table 1. The number of presented distance points is restricted because of limitation of table 

size. 

 

4. Comparison of DMol calculation with experimental data.  

Fig. 2 shows the comparison for the Ne-Ne system. We have an excellent agreement 

between theoretical and experimental data [27] for distances less then 1 Å. We have also a 

good agreement with the Hartung calculations [15]. At R<1 Å there is a clear disagreement 

between data from [27] and Leonas's data [6]. We consider the data [6] as much less reliable. 

At R>1 Å the data by Leonas [6] and Amdur [2] clearly indicate that calculations by the DMol 

approach are more accurate than those by Hartung et al [16]. In general, the agreement with 

experiment is unexpectedly good for the considered case. 

Fig 3 shows the data for the Ar-Ar sуstem. As in the case of Ne-Ne, we find an excellent 

agreement with experimental data [24] and a good agreement with Hartung calculations [14] 

at R< 1 Å. At R>1 Å, a reasonable agreement with experimental data by Amdur [1] and 

Leonas [6] is observed. 

Fig 4 illustrates the Kr-Kr case. Нere the agreement between the calculations obtained by 

the DMol method and experimental data is still reasonable. The difference between the 

calculations and measurements increases with internuclear distance.  

Fig 5 presents the data for the Xe-Xe system. The situation is similar to the Kr-Kr case. 

The difference between the data from [27] and calculations is greater, and the agreement with 

Leonas's [6] data is worse. 

Fig.6 illustrates the comparison of DMol results with experimental data for some 

asymmetric systems (C-Xe, Ar-Xe and Zn-Xe). The agreement of the results and some trends 

are the same as for the symmetric systems. 

Considering the general trend, we can say that for Ne-Ne and Ar-Ar, the agreement is very 

good. For heavier elements, the difference between the theory and the experiment increases 
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with internuclear distance. This difference could be explained as follows: in the DMol 

calculations, the total number of orbitals available was limited due to software limitations (see 

section 3) and, hence, for heavy elements one had to use a smaller number of hydrogenic 

orbitals.  In addition, in case of heavy elements the relativistic effects begin to be important, 

and DMol only had the lowest-level relativistic correction. In future, calculations with another 

DFT package that allows using larger numbers of orbitals could be used to improve the 

theoretical potential calculations. 

 

5. Comparison of DMol results with some analytical formulas. 

   

Let as introduce the screening length: 

af  =0.8853 (Z1
 α +Z2

 α )- β  .                                                                                                  ( 3 )  

Here Z1 and Z2 are nuclear charges of colliding particles and atomic units are used. Lindhard et 

al. [23], Moliere [26] and Jensen [15] used values α = 2/3 and β = 0.5. Firsov [35] suggested 

that values α = 0.5 and β = 2/3 should be better. Ziegler et al. [17] used values α = 0.23 and  

β=1. Here we will use the values offered by Firsov. Let us rewrite the potential in the 

following form: 

U(R)= Z1 Z2/( x af ) exp{- B(x) x},  x= R/ af..                                                                   ( 4 ) 

Fig. 6 shows the results of comparing the calculations obtained using the DMol 

approach with data obtained with the Moliere, Jensen and ZBL potentials. In Ref. [27] a 

different functional form of B(x) was proposed: 

B(x) = с1/( 1+ с2 x
1/2 + с3 x),                                                                                             ( 5 ) 

Parameters с1= 1.575, с2=0.719, с3 = -0.010 were selected as the best "universal" fit of 

experimental data [28]. In [28], parameters c1, c2, c3 are also given for each of the studied 

systems. The results of this fit are also shown in Fig. 7 as the Zinoviev potential. One can see 

that the Moliere potential data are generally higher than the DMol calculations, while the 
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Jensen and ZBL potentials are lower. The Zinoviev fit is the middle of the DMol calculations. 

Fig.7 shows that the data spread at x>7 is sufficiently high. 

           The potential data for different systems vary by many orders of magnitude. The 

screening parameter B(x) = -ln {U(x) x af /(Z1 Z2)}/x  changes slowly. In the case of the Bohr 

potential, B(x) is constant. It is more convenient to use this function for the analysis, because 

the Coulomb term and exponential dependence on x are eliminated in this case. Therefore, it 

allows clearly demonstrating any deviations from the screened Coulomb potential. The 

function B(x) values obtained by the DMol calculations are shown in Fig. 8. On average, the 

agreement with the proposed fit [28] is satisfactory, keeping in mind that this fit represents an 

average of the experimental data. There is some difference at small x, which implies that the 

set of united atom orbitals used in the DMol approach is probably not sufficiently large. These 

deflections do not influence strongly on the potential value because of the dominant 

contribution of the nuclear interaction term at these distances.  

  Table 2 shows the mean standard deviations of potentials δU calculated by the DMol 

method and corresponding screening functions δB relative to the universal values given by 

potential [28] as a function of internuclear distance x. At x>7, the error in the potential 

estimation performed by using the universal potential exceeds 50%. Therefore, the region of 

application of the universal potential is limited to x<7. 

 

7. Conclusions. 

In this paper, we compared interatomic potentials calculated with the DFT DMol approach 

with experiments and theory. The results showed that the DMol approach allows obtaining 

quite reasonable data for modeling different collisions. The agreement with the experiment is 

excellent for light collision partners and quite satisfactory for heavier atoms. The quality of 

calculations can be improved by extending the basis set. The experimental data proves that the 

approach of quasielastic scattering can be successfully used in modeling collision cascades in 
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ion-solids collisions. Moreover, analysis of the obtained data shows that the application region 

of any universal repulsive potential is restricted to R < 7 af. The fit proposed in [28] can be 

recommended for potential estimations. 
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R Ar-Al Ar-Ag Ar-Ar Ar-Xe C-Xe Kr-Al Kr-Ar Kr-C Kr-Ge Kr-Kr 

0,002 1,65E+06 5,95E+06 2,30E+06 6,82E+06 2,28E+06 3,30E+06 4,56E+06 1,52E+06 8,12E+06 9,13E+06 

0,004 8,12E+05 2,91E+06 1,13E+06 3,33E+06 1,11E+06 1,61E+06 2,23E+06 7,46E+05 3,97E+06 4,47E+06 

0,01 3,08E+05 1,09E+06 4,30E+05 1,25E+06 4,19E+05 6,08E+05 8,41E+05 2,82E+05 1,49E+06 1,68E+06 

0,014 2,13E+05 7,50E+05 2,98E+05 8,56E+05 2,88E+05 4,18E+05 5,79E+05 1,94E+05 1,02E+06 1,15E+06 

0,02 1,42E+05 4,96E+05 1,99E+05 5,65E+05 1,91E+05 2,78E+05 3,84E+05 1,29E+05 6,76E+05 7,60E+05 

0,04 6,14E+04 2,08E+05 8,56E+04 2,36E+05 8,09E+04 1,18E+05 1,62E+05 5,53E+04 2,82E+05 3,16E+05 

0,08 2,37E+04 7,72E+04 3,24E+04 8,69E+04 3,05E+04 4,43E+04 6,05E+04 2,11E+04 1,03E+05 1,15E+05 

0,1 1,69E+04 5,38E+04 2,29E+04 6,06E+04 2,14E+04 3,11E+04 4,24E+04 1,49E+04 7,16E+04 7,98E+04 

0,14 9,72E+03 3,00E+04 1,30E+04 3,35E+04 1,21E+04 1,74E+04 2,37E+04 8,45E+03 3,94E+04 4,37E+04 

0,16 7,65E+03 2,33E+04 1,01E+04 2,59E+04 9,57E+03 1,37E+04 1,86E+04 6,60E+03 3,04E+04 3,37E+04 

0,2 4,98E+03 1,47E+04 6,57E+03 1,64E+04 6,27E+03 8,99E+03 1,20E+04 4,30E+03 1,91E+04 2,14E+04 

0,24 3,41E+03 9,93E+03 4,55E+03 1,12E+04 4,30E+03 6,16E+03 8,04E+03 3,00E+03 1,30E+04 1,47E+04 

0,32 1,84E+03 5,22E+03 2,48E+03 5,80E+03 2,30E+03 3,13E+03 4,10E+03 1,64E+03 6,55E+03 7,48E+03 

0,4 1,13E+03 2,92E+03 1,42E+03 3,29E+03 1,39E+03 1,77E+03 2,39E+03 9,27E+02 3,64E+03 4,09E+03 

0,5 6,11E+02 1,57E+03 7,88E+02 1,87E+03 7,74E+02 9,89E+02 1,26E+03 4,93E+02 1,89E+03 2,19E+03 

0,6 3,55E+02 9,34E+02 4,87E+02 1,10E+03 4,47E+02 5,68E+02 7,20E+02 2,89E+02 1,08E+03 1,19E+03 

0,7 2,23E+02 5,63E+02 3,25E+02 6,69E+02 2,71E+02 3,36E+02 4,51E+02 1,81E+02 5,99E+02 6,80E+02 

0,8 1,50E+02 3,38E+02 2,18E+02 4,33E+02 1,74E+02 2,12E+02 2,99E+02 1,14E+02 3,53E+02 4,25E+02 

0,9 1,05E+02 2,10E+02 1,44E+02 2,92E+02 1,15E+02 1,42E+02 2,03E+02 7,09E+01 2,22E+02 2,83E+02 

1 7,40E+01 1,35E+02 9,64E+01 2,03E+02 7,54E+01 9,83E+01 1,39E+02 4,37E+01 1,46E+02 1,94E+02 

1,2 3,45E+01 5,84E+01 4,85E+01 1,02E+02 3,09E+01 4,84E+01 6,92E+01 1,62E+01 6,58E+01 9,76E+01 

1,4 1,54E+01 2,58E+01 2,77E+01 5,32E+01 1,18E+01 2,32E+01 3,81E+01 5,82E+00 3,00E+01 5,34E+01 

1,6 7,02E+00 1,13E+01 1,47E+01 2,90E+01 4,02E+00 1,10E+01 2,04E+01 1,86E+00 1,36E+01 2,87E+01 

2 1,56E+00 2,08E+00 3,92E+00 8,76E+00 -2,87E-01 2,55E+00 5,75E+00 -2,58E-01 2,56E+00 8,32E+00 

2,2 7,19E-01 8,45E-01 1,88E+00 4,71E+00 -6,50E-01 1,19E+00 2,90E+00 -2,62E-01 9,43E-01 4,35E+00 

2,4 2,88E-01 3,04E-01 8,48E-01 2,45E+00 -4,97E-01 5,06E-01 1,39E+00 -1,92E-01 2,78E-01 2,19E+00 

2,6 7,01E-02 6,98E-02 3,45E-01 1,21E+00 -3,76E-01 1,55E-01 6,24E-01 -1,67E-01 1,29E-01 1,05E+00 

3 -1,60E-02 -6,00E-02 1,50E-02 2,26E-01 -2,31E-01 -3,21E-02 7,27E-02 -1,23E-01 -3,40E-02 1,75E-01 

Table 1. Potential values calculated using Dmol approach (R in Angstrom, U in eV)  
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R Kr-N Kr-Ne Kr-Si Kr-Xe N-Xe Ne-Ne Ne-Xe Xe-Xe Zn-Xe 

0,002 1,78E+06 2,54E+06 3,55E+06 1,36E+07 2,66E+06 7,09E+05 3,79E+06 2,04E+07 1,14E+07 

0,004 8,70E+05 1,24E+06 1,74E+06 6,65E+06 1,30E+06 3,49E+05 1,85E+06 9,96E+06 5,54E+06 

0,01 3,28E+05 4,68E+05 6,54E+05 2,48E+06 4,88E+05 1,33E+05 6,95E+05 3,70E+06 2,07E+06 

0,014 2,26E+05 3,22E+05 4,50E+05 1,69E+06 3,35E+05 9,24E+04 4,77E+05 2,53E+06 1,41E+06 

0,02 1,51E+05 2,14E+05 2,99E+05 1,11E+06 2,22E+05 6,19E+04 3,15E+05 1,65E+06 9,30E+05 

0,04 6,43E+04 9,10E+04 1,26E+05 4,59E+05 9,41E+04 2,70E+04 1,33E+05 6,75E+05 3,86E+05 

0,08 2,45E+04 3,44E+04 4,75E+04 1,65E+05 3,54E+04 1,05E+04 4,98E+04 2,40E+05 1,40E+05 

0,1 1,74E+04 2,43E+04 3,33E+04 1,14E+05 2,48E+04 7,45E+03 3,49E+04 1,65E+05 9,67E+04 

0,14 9,78E+03 1,36E+04 1,87E+04 6,16E+04 1,40E+04 4,27E+03 1,96E+04 8,90E+04 5,24E+04 

0,16 7,65E+03 1,07E+04 1,47E+04 4,78E+04 1,10E+04 3,43E+03 1,54E+04 6,84E+04 4,05E+04 

0,2 4,99E+03 7,03E+03 9,60E+03 3,03E+04 7,18E+03 2,38E+03 9,86E+03 4,29E+04 2,59E+04 

0,24 3,50E+03 4,87E+03 6,54E+03 2,02E+04 4,91E+03 1,71E+03 6,71E+03 2,91E+04 1,74E+04 

0,32 1,86E+03 2,50E+03 3,31E+03 1,02E+04 2,64E+03 9,15E+02 3,61E+03 1,49E+04 8,70E+03 

0,4 1,04E+03 1,41E+03 1,89E+03 5,71E+03 1,59E+03 5,15E+02 2,14E+03 8,66E+03 4,98E+03 

0,5 5,53E+02 7,69E+02 1,05E+03 3,05E+03 8,73E+02 2,71E+02 1,18E+03 4,90E+03 2,63E+03 

0,6 3,23E+02 4,55E+02 5,97E+02 1,79E+03 4,99E+02 1,59E+02 6,89E+02 2,88E+03 1,49E+03 

0,7 1,98E+02 2,71E+02 3,56E+02 1,07E+03 3,01E+02 1,06E+02 4,27E+02 1,75E+03 9,03E+02 

0,8 1,20E+02 1,63E+02 2,28E+02 6,57E+02 1,91E+02 7,78E+01 2,67E+02 1,07E+03 5,46E+02 

0,9 7,17E+01 1,02E+02 1,54E+02 4,23E+02 1,23E+02 5,68E+01 1,65E+02 6,64E+02 3,29E+02 

1 4,20E+01 6,72E+01 1,06E+02 2,85E+02 7,70E+01 3,69E+01 1,04E+02 4,31E+02 2,06E+02 

1,2 1,37E+01 3,29E+01 4,99E+01 1,41E+02 2,82E+01 1,45E+01 4,52E+01 2,03E+02 8,89E+01 

1,4 3,79E+00 1,72E+01 2,26E+01 7,45E+01 8,96E+00 5,53E+00 2,26E+01 1,06E+02 4,16E+01 

1,6 3,64E-01 8,68E+00 1,00E+01 4,14E+01 1,74E+00 2,04E+00 1,19E+01 5,98E+01 2,02E+01 

2 -4,90E-01 1,88E+00 1,73E+00 1,25E+01 -1,19E+00 2,10E-01 3,11E+00 1,89E+01 5,00E+00 

2,2 -3,59E-01 7,99E-01 5,47E-01 6,87E+00 -9,20E-01 3,68E-02 1,48E+00 1,07E+01 2,62E+00 

2,4 -3,03E-01 3,04E-01 1,10E-01 3,68E+00 -7,01E-01 -1,48E-02 6,55E-01 5,96E+00 1,39E+00 

2,6 -2,55E-01 9,04E-02 4,50E-02 1,91E+00 -5,46E-01 -2,41E-02 2,58E-01 3,25E+00 7,15E-01 

3 -1,55E-01 -2.13E-02  -5,44E-02 4,23E-01 -3,25E-01 -1,48E-02 3,91E-03 8,61E-01 1,39E-01 

Table 1. (Continuation) 
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Table 2. The standard deviations of individual potentials δU calculated by the DMol approach 

and corresponding screening functions δB relative to universal values given by potential [28] 

as a function of internuclear distance x.  

 

X 0.1 0.2 0.5 1 2 3 5 7 10 

δB 0.074 0.049 0.033 0.033 0.034 0.045 0.055 0.063 0.11 

δU 0.007 0.010 0.016 0.034 0.070 0.15 0.32 0.55 0.80 
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Captions 

 

Fig. 1. Scattering cross sections in reduced units (see the text). 

 

Fig. 2. Interaction potential for Ne+-Ne. The Amdur's data [2] were obtained for the Ne-Ne 

(atom-atom) system. 

 

Fig. 3. Interaction potential for Ar+-Ar. The Amdur's data [1] are presented for the Ar-Ar 

system. 

 

Fig. 4. Interaction potential for Kr+-Kr. The Amdur's data [3,] were obtained for the Kr-Kr 

system. 

 

Fig. 5. Interaction potential for Xe+-Xe. The Amdur's data [4] are presented for the Xe-Xe 

system. 

 

Fig. 6. Interaction potential for asymmetric systems (C-Xe, Ar-Xe, Zn-Xe). Data for Ar-Xe 

were multiplied by a factor of 3 to make the picture clearer. 

 

Fig. 7. Interaction potentials calculated using the DMol approach as compared with the 

potentials proposed by Moliere [26], ZBL [17], Jensen [15] and Zinoviev [28]. The Ne-Kr 

data coincides almost exactly with the ZBL data for the same system and hence is not visible 

in the figure. 

 

Fig. 8. Screening function B(x) versus scaled internuclear distance x. Points are the DMol 

calculations for different systems. The solid line is function B(x) proposed in [28]. 
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