3,340 research outputs found

    The transition temperature of the dilute interacting Bose gas for NN internal degrees of freedom

    Full text link
    We calculate explicitly the variation δTc\delta T_c of the Bose-Einstein condensation temperature TcT_c induced by weak repulsive two-body interactions to leading order in the interaction strength. As shown earlier by general arguments, δTc/Tc\delta T_c/T_c is linear in the dimensionless product an1/3an^{1/3} to leading order, where nn is the density and aa the scattering length. This result is non-perturbative, and a direct perturbative calculation of the amplitude is impossible due to infrared divergences familiar from the study of the superfluid helium lambda transition. Therefore we introduce here another standard expansion scheme, generalizing the initial model which depends on one complex field to one depending on NN real fields, and calculating the temperature shift at leading order for large NN. The result is explicit and finite. The reliability of the result depends on the relevance of the large NN expansion to the situation N=2, which can in principle be checked by systematic higher order calculations. The large NN result agrees remarkably well with recent numerical simulations.Comment: 10 pages, Revtex, submitted to Europhysics Letter

    Background gauge invariance in the antifield formalism for theories with open gauge algebras

    Full text link
    We show that any BRST invariant quantum action with open or closed gauge algebra has a corresponding local background gauge invariance. If the BRST symmetry is anomalous, but the anomaly can be removed in the antifield formalism, then the effective action possesses a local background gauge invariance. The presence of antifields (BRST sources) is necessary. As an example we analyze chiral W3W_3 gravity.Comment: 17pp., Latex, mispelling in my name! corrected, no other change

    Breakdown of the perturbative renormalization group at certain quantum critical points

    Full text link
    It is shown that the presence of multiple time scales at a quantum critical point can lead to a breakdown of the loop expansion for critical exponents, since coefficients in the expansion diverge. Consequently, results obtained from finite-order perturbative renormalization-group treatments may be not be an approximation in any sense to the true asymptotic critical behavior. This problem manifests itself as a non-renormalizable field theory, or, equivalently, as the presence of a dangerous irrelevant variable. The quantum ferromagnetic transition in disordered metals provides an example.Comment: 4pp, 1 eps fi

    Batalin-Vilkovisky Integrals in Finite Dimensions

    Full text link
    The Batalin-Vilkovisky method (BV) is the most powerful method to analyze functional integrals with (infinite-dimensional) gauge symmetries presently known. It has been invented to fix gauges associated with symmetries that do not close off-shell. Homological Perturbation Theory is introduced and used to develop the integration theory behind BV and to describe the BV quantization of a Lagrangian system with symmetries. Localization (illustrated in terms of Duistermaat-Heckman localization) as well as anomalous symmetries are discussed in the framework of BV.Comment: 35 page

    String Picture of a Frustrated Quantum Magnet and Dimer Model

    Full text link
    We map a geometrically frustrated Ising system with transversal field generated quantum dynamics to a strongly anisotropic lattice of non-crossing elastic strings. The combined effect of frustration, quantum and thermal spin fluctuations is explained in terms of a competition between intrinsic lattice pinning of strings and topological defects in the lattice. From this picture we obtain analytic results for correlations and the phase diagram which agree nicely with recent simulations.Comment: 4 pages, 2 figure

    The arctic curve of the domain-wall six-vertex model in its anti-ferroelectric regime

    Full text link
    An explicit expression for the spatial curve separating the region of ferroelectric order (`frozen' zone) from the disordered one (`temperate' zone) in the six-vertex model with domain wall boundary conditions in its anti-ferroelectric regime is obtained.Comment: 12 pages, 1 figur

    Perturbative analysis of the gradient flow in non-abelian gauge theories

    Get PDF
    The gradient flow in non-abelian gauge theories on R^4 is defined by a local diffusion equation that evolves the gauge field as a function of the flow time in a gauge-covariant manner. Similarly to the case of the Langevin equation, the correlation functions of the time-dependent field can be expanded in perturbation theory, the Feynman rules being those of a renormalizable field theory on R^4 x [0,oo). For any matter multiplet and to all loop orders, we show that the correlation functions are finite, i.e. do not require additional renormalization, once the theory in four dimensions is renormalized in the usual way. The flow thus maps the gauge field to a one-parameter family of smooth renormalized fields.Comment: Plain TeX source, 28 pages, 14 figures; v2: typos corrected, agrees with published versio

    Localisation and mass generation for non-Abelian gauge fields

    Get PDF
    It has been suggested recently that in the presence of suitably "warped" extra dimensions, the low-energy limit of pure gauge field theory may contain massive elementary vector bosons localised on a "brane", but no elementary Higgs scalars. We provide non-perturbative evidence in favour of this conjecture through numerical lattice measurements of the static quark-antiquark force of pure SU(2) gauge theory in three dimensions, of which one is warped. We consider also warpings leading to massless localised vector bosons, and again find evidence supporting the perturbative prediction, even though the gauge coupling diverges far from the brane in this case.Comment: 27 pages; small clarifications adde

    Seiberg-Witten maps and noncommutative Yang-Mills theories for arbitrary gauge groups

    Full text link
    Seiberg-Witten maps and a recently proposed construction of noncommutative Yang-Mills theories (with matter fields) for arbitrary gauge groups are reformulated so that their existence to all orders is manifest. The ambiguities of the construction which originate from the freedom in the Seiberg-Witten map are discussed with regard to the question whether they can lead to inequivalent models, i.e., models not related by field redefinitions.Comment: 12 pages; references added, minor misprints correcte

    The Rapidly Rotating, Hydrogen Deficient, Hot Post-Asymptotic Giant Branch Star ZNG 1 in the Globular Cluster M5

    Full text link
    We report observations of the hot post-asymptotic giant branch star ZNG 1 in the globular cluster M5 (NGC 5904) with the Far Ultraviolet Spectroscopic Explorer (FUSE). From the resulting spectrum, we derive an effective temperature T_eff = 44300 +/- 300 K, a surface gravity log g = 4.3 +/- 0.1, a rotational velocity v sin i = 170 +/- 20 km/s, and a luminosity log (L/L_sun) = 3.52 +/- 0.04. The atmosphere is helium-rich (Y = 0.93), with enhanced carbon (2.6% by mass), nitrogen (0.51%) and oxygen (0.37%) abundances. The spectrum shows evidence for a wind with terminal velocity near 1000 km/s and an expanding shell of carbon- and nitrogen-rich material around the star. The abundance pattern of ZNG 1 is suggestive of the ``born-again'' scenario, whereby a star on the white-dwarf cooling curve undergoes a very late shell flash and returns to the AGB, but the star's rapid rotation is more easily explained by a previous interaction with a binary companion.Comment: 8 pages, 2 PostScript figures, Latex with emulateapj5. Accepted for publication in ApJ Letter
    • …
    corecore