83 research outputs found

    FT-IR Spectral Signature of Sensitive and Multidrug-Resistant Osteosarcoma Cell-Derived Extracellular Nanovesicles

    Get PDF
    Osteosarcoma (OS) is the most common primary bone cancer in children and adolescents. Despite aggressive treatment regimens, the outcome is unsatisfactory, and multidrug resistance (MDR) is a pivotal process in OS treatment failure. OS-derived extracellular vesicles (EVs) promote drug resistance to chemotherapy and target therapy through different mechanisms. The aim of this study was to identify subpopulations of osteosarcoma-EVs by Fourier transform infrared spectroscopy (FT-IR) to define a specific spectral signature for sensitive and multidrug-resistant OS-derived EVs. EVs were isolated from sensitive and MDR OS cells as well as from mesenchymal stem cells by differential centrifugation and ultracentrifugation. EVs size, morphology and protein expression were characterized. FT-IR/ATR of EVs spectra were acquired in the region of 400-4000 cm(-1) (resolution 4 cm(-1), 128 scans). The FT-IR spectra obtained were consistently different in the EVs compared to cells from which they originate. A specific spectral signature, characterized by a shift and a new band (1601 cm(-1)), permitted to clearly distinguish EVs isolated by sensitive and multidrug-resistant OS cells. Our data suggest that FT-IR spectroscopy allows to characterize and define a specific spectral signature for sensitive and MDR OS-derived EVs

    5-Aza Exposure Improves Reprogramming Process Through Embryoid Body Formation in Human Gingival Stem Cells

    Get PDF
    Embryoid bodies (EBs) are three-dimensional aggregates formed by pluripotent stem cells, including embryonic stem cells and induced pluripotent stem cells. They are used as an in vitro model to evaluate early extraembryonic tissue formation and differentiation process. In the adult organisms, cell differentiation is controlled and realized through the epigenetic regulation of gene expression, which consists of various mechanisms including DNA methylation. One demethylating agent is represented by 5-Azacytidine (5-Aza), considered able to induce epigenetic changes through gene derepression. Human gingival mesenchymal stem cells (hGMSCs), an easily accessible stem cells population, migrated from neural crest. They are particularly apt as an in vitro study model in regenerative medicine and in systemic diseases. The ability of 5-Aza treatment to induce hGMSCs toward a dedifferentiation stage and in particular versus EBs formation was investigated. For this purpose hGMSCs were treated for 48 h with 5-Aza (5 ÎĽM). After treatment, hGMSCs are organized as round 3D structures (EBs-hGMSCs). At light and transmission electron microscopy, the cells at the periphery of EBs-hGMSCs appear elongated, while ribbon-shaped cells and smaller cells with irregular shape surrounded by extracellular matrix were present in the center. By RT-PCR, EBs-hGMSCs expressed specific transcription markers related to the three germ layers as MAP-2, PAX-6 (ectoderm), MSX-1, Flk-1 (mesoderm), GATA-4, and GATA-6 (endoderm). Moreover, in EB-hGMSCs the overexpression of DNMT1 and ACH3 other than the down regulation of p21 was detectable. Immunofluorescence staining also showed a positivity for specific etodermal and mesodermal markers. In conclusion, 5-Aza was able to induce the direct conversion of adult hGMSCs into cells of three embryonic lineages: endoderm, ectoderm, and mesoderm, suggesting their possible application in autologous cell therapy for clinical organ repair

    Development of Xeno-free culture system for human Periodontal Ligament Stem Cells

    Get PDF
    The opportunity of transplanting adult stem cells into damaged organs has opened new prospectives for the treatment of several human pathologies. Aim of this study was to develop a culture system for the expansion and production of human Periodontal Ligament Stem Cells (hPDLSCs) using a new xeno-free media formulation ensuring the maintenance of the stem cells features comprising: the multiple passage expansion, mesengenic lineage differentiation, cellular phenotype and genomic stability, essential elements for conforming to translation to cell therapy1. Somatic stem cells were isolated from the human periodontium using a minimally invasive periodontal access flap surgery. Expanded hPDLSCs in a xeno-free culture showed the morphological features of stem cells, expressed the markers associated with pluripotency, and a normal karyotype. Under appropriate culture conditions, hPDLSCs presented adipogenic and osteogenic potential; indeed, a very high accumulation of lipid droplets was evident in the cytoplasm of adipogenic induced cells, and indisputable evidence of osteogenic differentiation, investigated by transmission electron microscopy, and analyzed for gene expression analysis has been shown2. Our results prove that the novel xeno-free culture method might provide the basis for GMP culture of autologous stem cells, readily accessible from human periodontium, and can be a resource to facilitate their use in human clinical studies for potential therapeutic regeneration

    Exosomes: Novel effectors of human platelet lysate activity

    Get PDF
    Despite the popularity of platelet-rich plasma (PRP) and platelet lysate (PL) in orthopaedic practice, the mechanism of action and the effectiveness of these therapeutic tools are still controversial. So far, the activity of PRP and PL has been associated with different growth factors (GF) released during platelet degranulation. This study, for the first time, identifies exosomes, nanosized vesicles released in the extracellular compartment by a number of elements, including platelets, as one of the effectors of PL activity. Exosomes were isolated from human PL by differential ultracentrifugation, and analysed by electron microscopy and Western blotting. Bone marrow stromal cells (MSC) treated with three different exosome concentrations (0.6 μg, 5 μg and 50 μg) showed a significant, dose-dependent increase in cell proliferation and migration compared to the control. In addition, osteogenic differentiation assays demonstrated that exosome concentration differently affected the ability of MSC to deposit mineralised matrix. Finally, the analysis of exosome protein content revealed a higher amount of basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF-BB) and transforming growth factor beta 1 (TGF-β1) as compared to PL. In regards to RNA content, an enrichment of small RNAs in exosomes as compared to donor platelets has been found. These results suggest that exosomes consistently contribute to PL activity and could represent an advantageous nanodelivery system for cell-free regeneration therapies

    Woven bone formation and mineralization by rat mesenchymal stromal cells imply increased expression of the intermediate filament desmin

    Get PDF
    BackgroundDisordered and hypomineralized woven bone formation by dysfunctional mesenchymal stromal cells (MSCs) characterize delayed fracture healing and endocrine –metabolic bone disorders like fibrous dysplasia and Paget disease of bone. To shed light on molecular players in osteoblast differentiation, woven bone formation, and mineralization by MSCs we looked at the intermediate filament desmin (DES) during the skeletogenic commitment of rat bone marrow MSCs (rBMSCs), where its bone-related action remains elusive.ResultsMonolayer cultures of immunophenotypically- and morphologically - characterized, adult male rBMSCs showed co-localization of desmin (DES) with vimentin, F-actin, and runx2 in all cell morphotypes, each contributing to sparse and dense colonies. Proteomic analysis of these cells revealed a topologically-relevant interactome, focused on cytoskeletal and related enzymes//chaperone/signalling molecules linking DES to runx2 and alkaline phosphatase (ALP). Osteogenic differentiation led to mineralized woven bone nodules confined to dense colonies, significantly smaller and more circular with respect to controls. It significantly increased also colony-forming efficiency and the number of DES-immunoreactive dense colonies, and immunostaining of co-localized DES/runx-2 and DES/ALP. These data confirmed pre-osteoblastic and osteoblastic differentiation, woven bone formation, and mineralization, supporting DES as a player in the molecular pathway leading to the osteogenic fate of rBMSCs.ConclusionImmunocytochemical and morphometric studies coupled with proteomic and bioinformatic analysis support the concept that DES may act as an upstream signal for the skeletogenic commitment of rBMSCs. Thus, we suggest that altered metabolism of osteoblasts, woven bone, and mineralization by dysfunctional BMSCs might early be revealed by changes in DES expression//levels. Non-union fractures and endocrine – metabolic bone disorders like fibrous dysplasia and Paget disease of bone might take advantage of this molecular evidence for their early diagnosis and follow-up

    Ultrastructural analysis reveals differences in the secretory activity among four regions of amniotic membrane

    Get PDF
    Human Amniotic Epithelial Cells (hAEC) from term placenta are a promising source of stem cells for regenerative medicine. In a previous study we observed histological heterogeneity, together with different expression of pluripotency markers and content in lipid granules among four regions of amniotic membrane (AM). To better investigate cell heterogeneity among different cell populations, we performed an ultrastructural study with Transmission Electron Microscopy. Term placentae from healthy women were collected after caesarean section and AM samples were freshly isolated from four regions: R1 (close to the umbilical cord); R2 (intermediate); R3 (peripheral to the placental disc); R4 (reflected amnion). Ultrastructural analysis revealed an epithelium of variable thickness, cellular shape, amount and type of vesicles in the four regions. The epithelium showed columnar hAEC with increased height in R1 and R3 and a multi-layered organization in R3, whereas it was a monolayer in the other regions. The highest amount of granules and vesicles was observed in R3, although R4 showed granules with a different density. Furthermore, in R1, R3 and R4 we noticed several vesicles of 100-150 nm in diameter, probably exosome-like structures, suggesting a consistent secretory activity. All along its length the epithelium was rich in microvilli both on the side facing the amniotic fluid and in lateral contacts (narrow desmosomal junctions) between cells. This in situ investigation shows for the first time differences in secretory activity and granules appearance along the AM as a proof of its heterogeneity. This could be relevant in clinical applications as the choice of the area could improve the effectiveness of AM/hAEC transplantation

    Polysaccharides on gelatin-based hydrogels differently affect chondrogenic differentiation of human mesenchymal stromal cells

    Get PDF
    Selection of feasible hybrid-hydrogels for best chondrogenic differentiation of human mesenchymal stromal cells (hMSCs) represents an important challenge in cartilage regeneration. In this study, three-dimensional hybrid hydrogels obtained by chemical crosslinking of poly (ethylene glycol) diglycidyl ether (PEGDGE), gelatin (G) without or with chitosan (Ch) or dextran (Dx) polysaccharides were developed. The hydrogels, namely G-PEG, G-PEG-Ch and G-PEG-Dx, were prepared with an innovative, versatile and cell-friendly technique that involves two preparation steps specifically chosen to increase the degree of crosslinking and the physical-mechanical stability of the product: a first homogeneous phase reaction followed by directional freezing, freeze-drying and post-curing. Chondrogenic differentiation of human bone marrow mesenchymal stromal cells (hBM-MSC) was tested on these hydrogels to ascertain whether the presence of different polysaccharides could favor the formation of the native cartilage structure. We demonstrated that the hydrogels exhibited an open pore porous morphology with high interconnectivity and the incorporation of Ch and Dx into the G-PEG common backbone determined a slightly reduced stiffness compared to that of G-PEG hydrogels. We demonstrated that G-PEG-Dx showed a significant increase of its anisotropic characteristic and G-PEG-Ch exhibited higher and faster stress relaxation behavior than the other hydrogels. These characteristics were associated to absence of chondrogenic differentiation on G-PEG-Dx scaffold and good chondrogenic differentiation on G-PEG and G-PEG-Ch. Furthermore, G-PEG-Ch induced the minor collagen proteins and the formation of collagen fibrils with a diameter like native cartilage. This study demonstrated that both anisotropic and stress relaxation characteristics of the hybrid hydrogels were important features directly influencing the chondrogenic differentiation potentiality of hBM-MSC

    Altered pH gradient at the plasma membrane of osteosarcoma cells is a key mechanism of drug resistance

    Get PDF
    Current therapy of osteosarcoma (OS), the most common primary bone malignancy, is based on a combination of surgery and chemotherapy. Multidrug resistance mediated by P-glycoprotein (P-gp) overexpression has been previously associated with treatment failure and progression of OS, although other mechanisms may also play a role. We considered the typical acidic extracellular pH (pHe) of sarcomas, and found that doxorubicin (DXR) cytotoxicity is reduced in P-gp negative OS cells cultured at pHe 6.5 compared to standard 7.4. Short-time (24-48 hours) exposure to low pHe significantly increased the number and acidity of lysosomes, and the combination of DXR with omeprazole, a proton pump inhibitor targeting lysosomal acidity, significantly enhanced DXR cytotoxicity. In OS xenografts, the combination treatment of DXR and omeprazole significantly reduced tumor volume and body weight loss. The impaired toxicity of DXR at low pHe was not associated with increased autophagy or lysosomal acidification, but rather, as shown by SNARF staining, with a reversal of the pH gradient at the plasma membrane (ΔpHcm), eventually leading to a reduced DXR intracellular accumulation. Finally, the reversal of ΔpHcm in OS cells promoted resistance not only to DXR, but also to cisplatin and methotrexate, and, to a lesser extent, to vincristine. Altogether, our findings show that, in OS cells, shortterm acidosis induces resistance to different chemotherapeutic drugs by a reversal of ΔpHcm, suggesting that buffer therapies or regimens including proton pump inhibitors in combination to low concentrations of conventional anticancer agents may offer novel solutions to overcome drug resistance

    Small Extracellular Vesicles from Inflamed Adipose Derived Stromal Cells Enhance the NF-ÎşB-Dependent Inflammatory/Catabolic Environment of Osteoarthritis

    Get PDF
    The last decade has seen exponentially growing efforts to exploit the effects of adipose derived stromal cells (ADSC) in the treatment of a wide range of chronic degenerative diseases, including osteoarthritis (OA), the most prevalent joint disorder. In the perspective of developing a cell-free advanced therapy medicinal product, a focus has been recently addressed to the ADSC secretome that lends itself to an allogeneic use and can be further dissected for the selective purification of small extracellular vesicles (sEVs). sEVs can act as "biological drug carriers" to transfer information that mirror the pathophysiology of the providing cells. This is important in the clinical perspective where many OA patients are also affected by the metabolic syndrome (MetS). ADSC from MetS OA patients are dysfunctional and "inflammatory" primed within the adipose tissue. To mimic this condition, we exposed ADSC to IL-1 beta, and then we investigated the effects of the isolated sEVs on chondrocytes and synoviocytes, either cultured separately or in co-culture, to tease out the effects of these "IL-1 beta primed sEVs" on gene and protein expression of major inflammatory and catabolic OA markers. In comparison with sEVs isolated from unstimulated ADSC, the IL-1 beta primed sEVs were able to propagate NF-kappa B activation in bystander joint cells. The effects were more prominent on synoviocytes, possibly because of a higher expression of binding molecules such as CD44. These findings call upon a careful characterization of the "inflammatory fingerprint" of ADSC to avoid the transfer of an unwanted message as well as the development of in vitro "preconditioning" strategies able to rescue the antiinflammatory/anticatabolic potential of ADSC-derived sEVs

    Platelet Function Testing in Patients with Acute Ischemic Stroke: An Observational Study

    Get PDF
    Background: The measurement of platelet reactivity in patients with stroke undergoing antiplatelet therapies is not commonly performed in clinical practice. We assessed the prevalence of therapy responsiveness in patients with stroke and further investigated differences between patients on prevention therapy at stroke onset and patients naive to antiplatelet medications. We also sought differences in responsiveness between etiological subtypes and correlations between Clopidogrel responsiveness and genetic polymorphisms. Methods: A total of 624 stroke patients on antiplatelet therapy were included. Two different groups were identified: "non-naive patients", and "naive patients". Platelet function was measured with multiple electrode aggregometry, and genotyping assays were used to determine CYP2C19 polymorphisms. Results: Aspirin (ASA) responsiveness was significantly more frequent in naive patients compared with non-naive patients (94.9% versus 82.6%, P < .0010). A better responsiveness to ASA compared with Clopidogrel or combination therapy was found in the entire population (P < .0010), in non-naive patients (P < .0253), and in naive patients (P < .0010). Multivariate analysis revealed a strong effect of Clopidogrel as a possible "risk factor" for unresponsiveness (odds ratio 3.652, P < .0001). No difference between etiological subgroups and no correlations between responsiveness and CYP2C19 polymorphisms were found. Conclusion: In our opinion, platelet function testing could be potentially useful in monitoring the biological effect of antiplatelet agents. A substantial proportion of patients with stroke on ASA were "resistant", and the treatment with Clopidogrel was accompanied by even higher rates of unresponsiveness. Longitudinal studies are needed to assess whether aggregometry might supply individualized prognostic information and whether it can be considered a valid tool for future prevention strategies
    • …
    corecore