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Abstract: Osteosarcoma (OS) is the most common primary bone cancer in children and adolescents.
Despite aggressive treatment regimens, the outcome is unsatisfactory, and multidrug resistance (MDR)
is a pivotal process in OS treatment failure. OS-derived extracellular vesicles (EVs) promote drug
resistance to chemotherapy and target therapy through different mechanisms. The aim of this study
was to identify subpopulations of osteosarcoma-EVs by Fourier transform infrared spectroscopy
(FT-IR) to define a specific spectral signature for sensitive and multidrug-resistant OS-derived EVs.
EVs were isolated from sensitive and MDR OS cells as well as from mesenchymal stem cells by
differential centrifugation and ultracentrifugation. EVs size, morphology and protein expression were
characterized. FT-IR/ATR of EVs spectra were acquired in the region of 400-4000 cm ™! (resolution
4 cm~1, 128 scans). The FT-IR spectra obtained were consistently different in the EVs compared to
cells from which they originate. A specific spectral signature, characterized by a shift and a new band
(1601 cm™1), permitted to clearly distinguish EVs isolated by sensitive and multidrug-resistant OS
cells. Our data suggest that FT-IR spectroscopy allows to characterize and define a specific spectral
signature for sensitive and MDR OS-derived EVs.

Keywords: extracellular nanovesicles; osteosarcoma; multidrug resistance; FT-IR/ATR spectroscopy;
non-invasive diagnostics

1. Introduction

Osteosarcoma (OS) is the most common primary bone tumor, mainly occurring in
children, teens, and young adults [1]. The 5-year survival rate for localized osteosarcoma is
about 70%, however, despite aggressive treatments, it is dramatically lower (20%) in pa-
tients with metastases at diagnosis or recurrent disease [2]. Chemoresistance is still a major
cause of relapse in OS and has been associated with impaired drug transport or increased
drug efflux due to the overexpression of efflux transporters such as the P-glycoprotein,
encoded by the multidrug resistance protein 1 gene (MDR-1) [3,4]. Additional factors also
play a role in the natural history and the responsiveness to chemotherapy of OS. Among
these, the tumor microenvironment and cell-to-cell interactions are well-known regulators
of the tumorigenic process and contribute to cancer progression. The multidirectional and
dynamic interactions among cells are mediated by soluble factors and extracellular vesicles
(EVs). Indeed, EVs and their cargo have been associated with OS growth, metastasis, and
chemoresistance [5-8]. In fact, we have previously demonstrated that multidrug-resistant
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OS cells are able to spread their ability to resist the effects of doxorubicin to sensitive cells
by transferring EVs carrying P-glycoprotein and MDR-1 mRNA [6]. Moreover, EVs can
contribute to exacerbating drug resistance by additional mechanisms. EVs can directly in-
teract and sequest drugs or transfer drug resistant phenotype to sensitive cells by changing
their transcriptome [9,10]. The possibility to distinguish EVs derived from sensitive and
multidrug-resistant OS cells may help to follow OS progression, and potentially improve
the effectiveness of conventional therapies through personalized medicine approaches.

Fourier-transform infrared spectroscopy (FT-IR) has been fruitfully applied to describe
structural characterization of proteins and protein-membrane interactions in biological ma-
trices [11]. Malignant cell characteristics and cell differentiation show specific vibrational
molecular signatures, thus indicating a modified chemical composition associated with
biomolecules such as proteins, nucleic acids, lipids, and carbohydrates [12-14]. Vibrational
spectroscopy is simple, label-free, sensitive, and requires minimal sample preparation.
Therefore, FT-IR spectroscopy could also be applied to characterize EVs and the cells from
which they derive. Indeed, Mihdly et al. have been able to distinguish exosomes, microvesi-
cles, and apoptotic bodies based on specific FT-IR profiles derived from amide and CH
stretching vibrations [15]. Specific fingerprints of EVs subpopulations (i.e., large (~600 nm),
medium (~200 nm), and small (~60 nm EVs)) from prostate cancer and melanoma cell lines
have been identified by FI-IR analyses [16].

In this study, we challenged FT-IR spectroscopy to fingerprint OS-derived EVs to
define a specific spectral signature for sensitive and multidrug-resistant OS-derived EVs.
For this purpose, we purified and characterized EVs from doxorubicin-sensitive and
resistant OS cells and mesenchymal stromal cells (MSC). We identified different spectrum
profiles for EVs and for the cells from which they derive. Moreover, we identified a specific
pattern, characterized by a shift and a new band, which permitted to clearly distinguish
EVs isolated from sensitive and doxorubicin-resistant OS cells. These results demonstrated
that FI-IR spectroscopy is a non-invasive method that should be further investigated for
EV characterization and can be utilized in EV-based diagnostic and prognostic approaches.

2. Materials and Methods
2.1. Cell Culture

The human OS cell lines MG-63 and 143B were purchased from the American Type
Culture Collection (ATCC, Manassas, VA, USA). The MDR cell line MG-63DXR30 was es-
tablished from the parental MG-63 [17]. MG-63 and 143B cells were maintained in Iscove’s
Modified Dulbecco’s Medium (IMDM, Invitrogen, Carlsbad, CA, USA), supplemented
with 10% heat-inactivated fetal bovine serum (FBS), penicillin (100 U/mL), and strepto-
mycin (100 pg/mL) (Sigma-Aldrich, Milan, Italy). Drug-resistant variant MG-63DXR30 was
continuously cultured in the presence of the selective drug concentration (30 ng/mL dox-
orubicin), except when the supernatant was collected to isolate EVs. Adipose-derived mes-
enchymal stem cells (ADMSCs) were purchased from the ATCC, and they were grown in
o-minimum essential medium (-MEM) supplemented with 10% FBS, 100 U/mL penicillin,
and 100 pg/mL streptomycin). Passage 4-5 ADMSCs were used in all the experiments.
Cells were maintained at 37 °C in a humidified 5% CO, atmosphere, and periodically tested
for mycoplasma contamination.

2.2. Extracellular Nanovesicles (EVs) Isolation and Purification

Cells were cultured until 70-80% confluence, then washed with phosphate-buffered
saline (PBS) and incubated for two consecutive periods (18 h and additional 18 h) with
IMDM supplemented with 10% FBS depleted of extracellular nanovesicles obtained via
ultracentrifugation [18]. Cell density and viability were assessed by the erythrosine B
(Sigma-Aldrich) dye exclusion method [19]. EVs pellet was obtained from the supernatant
collected from MG-63, MG-63DXR30, 143B, and ADMSC cells grown on 15 Petri dishes
(diameter 150 mm, 18 mL/Petri). The EVs were concentrated by a series of differential
centrifugations: 500x g for 10 min (twice), 2000x g for 15 min (twice), and 10,000 g for
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30 min (twice) at 4 °C to remove floating cells and cellular debris. The supernatant was
then ultracentrifuged at 110,000 x g for 1 h at 4 °C (Beckman Coulter, Milan, Italy). The EVs
pellet was washed (110,000 g for 1 h at 4 °C), resuspended in PBS, and stored at —80 °C
until use. EVs quantity was determined by the Bradford method (Bio-Rad, Milan, Italy).
The EVs derived from the supernatant of MG-63 and from the medium of MG-63DXR30
were named EVs/s and EVs/DXR, respectively.

2.3. Transmission Electron Microscopy

EVs were resuspended in 2% paraformaldehyde (PFA) and loaded onto formvar-
carbon coated grids (Electron Microscopy Sciences, Hatfield, PA, USA). After fixation in
1% glutaraldehyde, EVs were washed, counterstained with a solution of uranyl oxalate
(pH 7.0), and embedded in a mixture of 4% uranyl acetate and 2% methylcellulose. EVs
were observed with a Zeiss-EM 109 transmission electron microscope (Zeiss, Oberkochen,
Germany). Images were captured by using the NIKON digital camera Dmx 1200F, and
ACT-1 software (NIKON Corporation, Tokyo, Japan). The EVs diameter was measured (n >
200), and the percentage of size distribution was calculated.

2.4. Western Blot Analysis

EVs and cell pellets were lysed with RIPA buffer (25 mM Tris-HCI pH 7.6, 150 mM
NacCl, 1% NP-40, 1% Na-deoxycholate, 0.1% SDS) added with protease inhibitor cocktail
(Roche, Milan, Italy) (30 min at 4 °C). Nuclei and cell debris were removed by centrifu-
gation. The protein concentration was determined by using the Bradford assay. EVs and
total cellular proteins were resolved by 10% SDS-polyacrylamide gel and transferred to
a nitrocellulose membrane (Thermo Fisher Scientific, Waltham, MA, USA). After block-
ing with 5% dry milk (Thermo Fisher Scientific) in T-TBS (0.1 M Tris-HCl pH 8.0, 1.5 M
NaCl, and 1% Tween-20) for 1 h at room temperature, the membranes were incubated
with rabbit polyclonal CD9, CD63, CD81, and hsp70 (1:1000) (System Biosciences, Palo
Alto, CA, USA) antibodies or mouse polyclonal anti-calnexin (1:500) (sc-23954, Santa Cruz)
antibody overnight at 4 °C. After washing in 0.05% Tween-20 in PBS, the membranes
were incubated with goat anti-rabbit antibody (EXOAB kit) (1:20,000) or goat anti-mouse
antibody (nif 825, Amersham, Ge Healthcare, Freiburg, Germany) (1:1000) conjugated to
horseradish peroxidase for 1 h at room temperature. Immunocomplexes were detected
with the ECL western blot analysis system (Euroclone, Milan, Italy). Reversible Ponceau S
(Sigma-Aldrich) staining was used to assess equal gel loading.

2.5. Fourier Transform Infrared Analysis

Cell pellets and EVs were resuspended in PBS to avoid possible inference of the bands
of crystallized medium in the 400-1200 cm ! area. Bands of PBS were acquired at each time
point, following the same conditions used for EVs samples. The acquisition was carried
out on EVs (5 pL containing 9 4 2 g total protein) or cell pellet (5 uL containing 0.5 x 10°
cells)-containing droplets, left to dry on the ATR crystal. For each acquisition, 5 uL EVs or
cell pellet in PBS were used and deposited on the crystal. The acquisition was performed
by a Perkin Elmer Spectrum 2 instrument, equipped with a diamond crystal ATR, with the
following acquisition parameters: acquisition range 4000-400 cm ™!, resolution 4 cm~!, 128
scans, step size 0.5 cm~!. For EV data processing, all bands were scaled with respect to the
external band of PBS at 1084 cm™!, and then the PBS curve was subtracted from each curve.
These curves gave a first indication of the total amount of proteins and lipids contained
in the samples. To compare the protein: lipid ratio, all curves were scaled with respect to
the Amide I band at 1650 cm~!. These data permitted to evaluate the variability among
different cells types as well as the internal variability within each group.

2.6. Statistical Analysis

Statistical analysis was performed using the Graph Pad Prism 7.04 software for Win-
dows (Graph Pad Software, La Jolla, CA, USA). Results were reported as the mean =+ stan-



Cells 2022, 11,778

40f13

dard deviation and differences between groups were analyzed by using the non-parametric
Mann-Whitney test. Only p < 0.05 were considered significant.

3. Results
3.1. Extracellular Nanovesicles Isolation and Characterization

Extracellular nanovesicles isolated from sensitive and doxorubicin-resistant OS cells
were morphologically homogeneous with a typical round or cup-shaped appearance, as
shown by transmission electron microscopy analysis (Figure 1a). The size distribution of
OS-derived EVs is described in Figure 1b. Extracellular nanovesicle purity was verified by
Western blotting analysis for transmembrane and cytosolic proteins typically recovered in
EVs [20]. As shown in Figure 1c, CD9 and CD63 were strongly enriched in OS-derived EVs
preparations compared to cell lysates and the heat-shock protein 70 (hsp70) was expressed
in all samples. EVs preparations were negative for the endoplasmic reticulum protein
calnexin. The amount of EVs released by doxorubicin-resistant cells was significantly
higher than the amount of EVs derived from OS-sensitive cells (p = 0.004) (Figure 1d).
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Figure 1. Osteosarcoma—derived extracellular nanovesicles (EVs) characterization. (a) Representative
transmission electron microscopy images of EVs, isolated from medium conditioned by MG-63
(EVs/s) and MG-63DXR30 (EVs/DXR) cells (scale bar: 100 nm). (b) The distribution of vesicles
in different size classes is described as percentage of distribution, with evidence of individual
measurements, mean =+ standard deviation. (c) Protein content-based EVs characterization was
assessed by Western blot analysis for the expression of transmembrane proteins, cytosolic protein,
and endoplasmic reticulum protein. (d) Box-plots depicting the release of EVs by OS cells, that was
quantified by protein assay and normalized on 1 x 10° viable cells (median and min-max values are
shown, n = 5, Mann-Whitney test, * p-value = 0.04).
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3.2. Analysis of Fourier-Transform Infrared (FI-IR) Spectra of EVs and Cells of Origin

FT-IR spectroscopy simultaneously provides information on different biomolecules
contained in a biological system, such as lipids, proteins, nucleic acids, and carbohydrates.
The spectroscopy region most used for biological applications is the mid-infrared in the
2.5-25 pum (4000400 cm 1) [21].

As both EVs and cells were resuspended in PBS before acquisition, the IR spectrum of
PBS, as control, is reported in the Supplementary Materials (Figure S1), showing different
IR features in comparison with those ascribed to EVs and cells. The PBS spectrum showed
the characteristic sharp bands at 1076, 976, 857 cm ™! (v P-O) and broad bands at 1660
and ~3000 cm~! [22]. Proper subtraction of the band at 1660 cm ™! was essential, as it
overlapped with the Amide I band. No differences were registered in the PBS spectra
acquired at different time points, which, instead, perfectly overlap.

FT-IR spectra of EVs derived from OS sensitive and doxorubicin-resistant cells are
shown in Figure 2. The analysis of FI-IR spectra of EVs revealed specific bands. In
particular, all EVs curves showed the amide I absorption band located at ~1649 cm~!,
associated with the C=0 stretching mode of the peptide bond, and the amide II absorption
located at ~#1455 cm ™!, which was primarily ascribable to N-H vibrations of peptide groups.
A band is also assessed at 1407 cm !, which can be attributed to symmetric and asymmetric
vibration of COO— [23].
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Figure 2. Representative spectra of EVs/s and EVs/DXR after subtracting PBS curve. Bands in red
are those relevant to lipids and proteins structure, experiencing differences among different groups.

However, bending in the 1400 cm ! area is related both to lipids and to proteins, so

different contributions might impact the band at 1407 [16]. Additionally, the absorption
of the ester groups of phospholipids, triglycerides, and cholesterol esters was revealed at
1738 cm ™!, and acyl group vibrations appeared at 2930 and 2852 cm ™.

A band on the interval at 986-992 cm ™! (986 cm 1) was associated with the ribose
phosphate main chain, whereas the band at 966 cm ! (absent here) arose from the stretching
vibration of the DNA backbone [13]. The spectra of nucleic acids are characterized in four
spectral regions: the region of 1780-1550 cm™~! for in-plane vibrations of double bonds
of the bases, the region of 1550-1270 cm ™! for the deformation vibrations of the bases
coupled with the sugar vibrations, the region of 1270-1000 cm ™! for vibrations of -PO2—,
and the region of 1000~780 cm ™! for the vibrations of the sugar-phosphate backbone. Here,
because of the overlapping of several bands, only the band at 1318 was clearly visible.
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The intra-sample repeatability of FT-IR spectra was high, as shown in the Supplementary
Materials (Figure S2) for MG-63-derived EVs replicate acquisitions.

Comparing FT-IR profiles of EVs and the OS cells from which they were isolated, we
could observe the same profile in the part of the spectra above 1300 cm~!, with the same
bands revealed for cells and EVs, although with different intensity and variability (Figure 3a).
However, EVs and cells showed a completely distinct profile in the 900-1300 cm ™! area, which
made each EV clearly distinguishable from the relevant cells. This region has been linked to the
stretching vibration of the nucleic acid backbone [13]. Indeed, cells showed bands at 1240 and
1040 cm !, which were not detected in the EVs, and a relevant increase in the intensity of the
band at 1080 cm~!. Bands at 1240 and 1080 cm~! were due to the symmetric and asymmetric
stretching modes of the phosphodiester groups, so they depended on the nucleic acid content of
the cell. The band at 1040, instead, was associated with polysaccharides [24-26]. In addition,
while OS cells showed a very low variability among replicates and sensitive/non-sensitive cell
types, (all curves essentially overlapped in the protein and lipid zones), higher intra-specimen
variability was assessed for the EVs, together with significant differences among the different
EV groups (Figure 3b—d).
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Figure 3. FT-IR/ATR spectra of EVs/s, EVs/DXR, and cells from which they are derived. (a) FT-IR
spectra after subtracting the PBS reference curve of OS cells and OS derived-EVs. (b) FT-IR spectra of
OS sensitive and drug-resistant cells. Panels (c,d) highlight the band region corresponding to protein
and lipid zones, respectively.

After normalization to equal intensities with respect to the Amide I band at 1649 cm 1,
we compared the FI-IR spectra of different EV samples. FI-IR spectral differences between
MG-63-derived EVs and MG-63DXR30-derived EVs were observed in the band regions
of 1650-1545 cm~!. Indeed, the band at 1601 cm~! appeared only in MG-63-derived
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EVs and a shift in the bands at 1649 cm~! was found (Figure 4a—c). The presence of the
peculiar band at 1601 cm~! was also confirmed in EVs derived from the chemosensitive
OS cell line 143B, which we have previously characterized [27] (Figure S3). In addition,
a much higher variability was observed in the quantity of lipids compared to proteins
for doxorubicin-resistant samples. Protein organization was similar in EVs derived from
sensitive and doxorubicin-resistant OS cells. Spectroscopic protein-to-lipid ratio verified by
comparing the intensity of the relevant bands was variable in MG63DXR30-derived EVs
while remaining almost constant into MG-63-derived EVs.

a)
v
ic EVs/DXRI
o
9 EVs/DXR I
% ——EVs/DXRII
Q0 —EVs/s |
o — 0
4= 2 .4 —EVs/s
g % - —EVs/s
C ~0
o] —
=
3500 3300 3100 2900 2700 2500 2300 2100 1900 1700 1500 1300 1100 900
Wavelength [cm™]
) o & ‘ C)
v
= ] 2 -
= N = 2
= / =
= o |
5 o
g S
c g
) c
c o - i
[} o o~ = o <
= 0 O 2] £ © [7)
e @ 5 (=} - —
& AR c 3
| N 9 :2
O =
=
3100 2900 2700 1700 1550 1400
Wavelength [cm''] Wavelength [cm]

Figure 4. FT-IR/ATR spectra of EVs/s and EVs/DXR. (a) Spectra of EVs after scaling with respect to
the band at 1649 cm ! and zooms on the (b) lipid and (c) protein areas. The band in red, at 1601 cm~ L,
permits distinction between sensitive and resistant EVs.

Additionally, we analyzed spectra profiles of mesenchymal stromal cells and MSC-
derived EVs. Transmission electron microscopy analysis showed that the extracellular
nanovesicles isolated from MSC cells were morphologically homogeneous with a typical
round- or cup-shaped appearance and were characterized for the tetraspanins CD63, CD9,
CD81, and cytoplasmic hsp70 expression (Figure S4a,b).

MSC and OS cell spectra profiles were similar, while OS and MSC-derived EV profiles
and spectroscopic protein-to-lipid ratio were completely different (Figure 5). Indeed,
although the position of the bands is the same, the intensity of those in the lipids zone is
relevantly higher, indicating an important shift in the protein:lipid ratio.
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Figure 5. FT-IR/ATR spectra of OS EVs/s, OS EVs/DXR, MSC EVs, and cells from which they were
derived. (a) FT-IR spectra after subtracting the PBS reference curve and zooms on the (b) lipid and
(c) protein areas for OS and ADMSC cells. Panel (d,e) highlight the band region corresponding to
protein and lipid zones, respectively, for EVs samples.

4. Discussion

Fourier-transform infrared spectroscopy has recently been proposed to define healthy
vs. disease profiles of cells and cell-derived vesicles. In fact, this technique is able to
detect subtle changes in the molecular structure of nucleic acids, lipids, proteins, and
carbohydrates in biological samples, thus defining a specific biomolecule fingerprinting. FT-
IR spectroscopy has been utilized to identify and distinguish subpopulations of EVs derived
from melanoma cells with different malignant grades [28], and it has been fruitfully applied
to reveal differences at the single vesicle level between EVs derived from colon normal
epithelial cells and colon cancer cells [23]. Moreover, FI-IR spectra were used to characterize
EVs isolated from biological fluids and consistently different spectral signatures were
identified for salivary cancer and healthy individual derived-EVs [29], for blood from
prostate cancer and healthy patient derived-EVs [30], and for blood derived-EVs isolated
from Alzheimer’s disease affected and control subjects [31].

In this study, we focused on the possibility to find a “biomolecular fingerprinting”
based on FT-IR spectroscopy with the aim to distinguish EVs isolated from sensitive and
drug-resistant osteosarcoma cells.
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Extracellular vesicles secreted by drug-resistant cells are considered players of drug
resistance maintenance and transfer in different types of tumors, including breast, prostate,
colon, lung, gastric cancer as well as osteosarcoma [5,32]. This activity has been associated
with specific EV cargo or EV properties. Indeed, breast cancer-derived EVs favor drug
resistance by transferring pro-survival signals, reducing the intracellular accumulation of
drugs, upregulating P-glycoprotein expression in sensitive cancer cells, and altering the
epithelial-mesenchymal transition [33]. Similar mechanisms were also found in prostate
cancer, where EVs contributed to docetaxel resistance [34], and ovarian cancer where
EVs can deliver vascular-endothelial growth factor (VEGF) into endothelial cells causing
resistance to anti-VEGF therapies [35]. EVs derived from the plasma of patients with
acute myeloid leukemia (AML) confer idarubicin resistance in sensitive AML by inducing
the expression of the drug efflux pumps MRD1 and MRP1 [36]. In stress conditions,
nasopharyngeal carcinoma cells produced EVs containing the endoplasmic reticulum
resident protein 44, which could be transferred to adjacent cells strengthening cisplatin
resistance [37]. Additionally, a differential expression of exosomal circRNAs has been found
in drug-resistant colon cancer cells compared to sensitive ones [38]. Furthermore, cells of
the tumor microenvironment can be involved in chemoresistance by means of EVs cargo.
Indeed, cancer-associated fibroblast-derived EVs are able to confer cisplatin resistance
to non-small cell lung cancer [39] and macrophage-derived EVs mediated doxorubicin
resistance in gastric cancer [40].

Unfavorable prognosis in OS is often associated with inherent or acquired drug
resistance [41], a detrimental process in which EVs have shown a specific involvement.
Indeed, it has been demonstrated that doxorubicin and cisplatin resistance are transferred
from OS resistant to sensitive cells by means of EVs carrying P-glycoprotein, MDR-1 mRNA,
or the circular RNA hsa_circ_103801 [6,42]. The study of the alterations in protein and RNA
content of EVs secreted by drug-resistant cells and the isolation of circulating EVs may
become a promising approach to discover and validate new biomarkers that could be used
to improve disease monitoring.

The aim of the present study was to identify a specific FT-IR spectral signature for sensitive
and drug-resistant OS-derived EVs. Thus, we purified EVs from doxorubicin-sensitive and
resistant OS cells, and verified EV size and morphology by transmission electron microscopy.
The strong enrichment in CD9 and CD63 proteins in EVs samples, compared to the cells from
which they derive, and the absence of calnexin, an endoplasmic reticulum protein, confirmed
the purity of extracellular vesicles samples [20]. The size distribution profile of isolated EVs was
observed to be in the range of 50 to 200 nm, consistent with previously published reports [43,44].
In addition, according to results observed in ovarian and prostate cancer, we verified that drug-
resistant OS cells release significantly higher amounts of EVss compared to the respective sensitive
cells [45-47]. Increased EV shedding has also been reported when cells are subjected to hypoxia
and acidic stress, conditions that characterize tumor mass persistence and aggressiveness [48,49].

FT-IR analysis was therefore applied to identify specific spectral fingerprints in EVs
derived from OS-sensitive and drug-resistant cells. We analyzed spectral regions charac-
teristic of the absorption bands of nucleic acids, lipids, proteins, and carbohydrates, as
biological features associated with all cells and EVs, after appropriate subtraction of the
PBS profile. Although the spectra were very complex and resulted from the overlapping
absorption of multiple biomolecules, the absorption of the amide I, amide II, and ester
groups of phospholipids, triglycerides, and cholesterol esters was clearly visible. FT-IR
spectra of EVs and cells, from which they derived, differed in the 900-1300 cm ! area that
is typically referred to as the stretching vibration of the nucleic acid backbone. This could
be reasonably ascribable to the consistently different content of RNA and DNA in EVs and
cells [50,51].

The comparison of sensitive and doxorubicin-resistant OS cell-derived EVs revealed
a similar protein organization, although with a greater variable protein-to-lipid ratio in
EVs/DXR. These data are in line with recent literature that correlated lipid composition of
EVs with EV release and cancer aggressiveness [52,53].
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After proper normalization of the Amide I band at 1649 cm !, peculiar characteristics
in the profile of sensitive and doxorubicin-resistant cells-derived EVs become clearly visible.
A shift in the band regions of 1650~1545 cm~! and a band at 1601 cm !, which characterize
the sensitive EV population, enabled to unambiguously distinguish spectra of EVs/s and
EVs/DXR. This could be ascribed to a modification of the Amide I band and of the «-helix
conformation [54]. Indeed, in FTIR spectroscopy, different peak positions of the Amide I
band in the 1600 to 1700 cm ! area correlate to different secondary structures of the proteins
(i-e., unstructured conformation vs. o«-helix conformation) and can be used to monitor
conformation changes in proteins/peptides [55,56].

The differences between FT-IR spectra of sensitive and resistant EVs were not de-
tectable in the corresponding cells, and this can be reasonably associated with the higher
level of complexity, and the number of different structures composing a cell, compared
to an EV. In addition, relevant bands in the 800~1300 cm ! area in the cells overlap with
sharp bands of PBS and might be completely concealed, so proper identification of their
position and intensity might be hampered, even after PBS subtraction. Thus, EVs represent
a circulating tumor component with specific subgroup characteristics much more easily
recognizable than cells by spectroscopy.

We further analyzed FI-IR spectra profiles of mesenchymal stromal cells, as a model
of normal human cells, and MSC-derived EVs. Notably, MSC and OS cell FT-IR spectra
profiles were similar, while OS and MSC-derived EV profiles and the spectroscopic protein-
to-lipid ratio were completely different. These findings further strengthened the possibility
to be able to distinguish among EVs populations by FT-IR spectroscopy.

Furthermore, the application of liquid biopsy approaches required the identification
of reliable and easily detectable biomarkers, with affordable costs. It is noteworthy that
only a few micrograms of EVs are sufficient to obtain clear and reliable FI-IR spectra
signals. In addition, vibrational spectroscopy is label-free, sensitive, and requires minimal
sample preparation. Moreover, machine-learning approaches can be used to analyze IR
spectra in an automated fashion, which represents an additional advantage for future
clinical applications.

5. Conclusions

In this study, we demonstrated the possibility to characterize OS-derived EVs by
Fourier transform infrared spectroscopy (FI-IR) to define a specific spectral signature
for drug-resistant OS-derived EVs. Since EVs can be considered circulating markers of
cancer progression, aggressiveness, and resistance to therapy, our findings represent the
starting point to explore the possible use of the FI-IR technique to identify EVs with an
aggressive phenotype.
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