151 research outputs found

    A Rare Case of Homicide by Dual Method-Strangulation with Cut Throat: A Case Report

    Get PDF
    Background: Homicide is killing of a human being by another human being. Various methods like strangulation, cut throat, stabbing etc may be used for homicide; however combination of two mechanisms is rare.Case Report: hereby we present a rare case with unexpected appearance of two different mechanisms of homicide applied over same region, wherein body of a female was referred to us with history of cut throat. Body of the deceased was found near her house with cut throat injuries over front of neck, on examination cut throat injuries were present over neck along with ligature mark intermingling with them.Conclusion: The present case represents an unexpected rare association of two methods of homicide, as in this case of strangulation followed by cut throat. Correct Interpretation of cause of death with its manner in such case is very important, which needs meticulous post-mortem examination along with proper correlation with other information

    Privation de nourriture et métabolisme de base chez le dromadaire

    Get PDF
    Five female camels were used in this study. They were totally deprived of food for 5 days. Their body weight decreased by 9.3% when compared to the control. Body temperature and respiratory rate declined with progressive starvation suggesting a reduced metabolism. Heat production decreased by 25% on the second day of food deprivation and regained the control value afterrefeeding. Plasma Thyroidhormones, T4 and T3, decreased by 80% and 60% respectively after 2 days of starvation. On the fifth day, when the camels were heat-stressed in an ambiance of 40-42°C, thermoregulatory responses were suppressed and body temperature increased with the time of heat exposure. Body temperature was shifted by 1°C lower than the control. These results suggest that the reduction in metabolism is one important strategy used by the camel to endure food deprivation.Cinq chamelles ont été privées de nourriture pendant 5 jours. Leur poids corporel a diminué de 9.3% par rapport à la période témoin. La température corporelle et la fréquence respiratoire ont diminué progressivement avec le jeûne suggérant une réduction du métabolisme. La production de chaleur a diminué de 25% à partir du 2ème jour et retrouve la valeur témoin après alimentation. Les hormones thyoidiennes, T4 et T3 ont diminué de 80 et 60% respectivement après 2 jours de privation de nourriture. Quand les animaux ont été stressés par la chaleur (40-42°C), les réponses thermorégulatrices ont été supprimées et la température corporelle a augmenté avec le temps d'exposition. Cette température est restée inférieure de 1°C par rapport au temoin. Ces resultats suggèrent que la réduction du métabolisme est une stratégie importante utilisée par le dromadaire pour supporter le jeûne

    A Fully Integrated Electrochemical BioMEMS Fabrication Process for Cytokine Detection: Application for Heart Failure

    Get PDF
    AbstractIn this present study, a fully integrated BioMEMS was developed using silicon technology to simultaneously detect varying cytokine biomarkers: interleukin-1 (IL-1), interleukin-10 (IL-10), and interleukin-6 (IL-6) using eight gold working microelectrodes (WE). The biomarkers are one of many antigens that are secreted in acute stages of inflammation after left ventricle assisted device (LVAD) implantation for patients suffering from heart failure (HF). The monoclonal antibodies (mAb): anti-human IL-1, IL-10, and IL-6 were immobilized onto gold microelectrodes through functionalization with carboxyl diazonium, respectively. Cyclic voltammetry (CV) was applied during the microelectrode functionalization process to characterize the gold microelectrode surface properties, while electrochemical impedance spectroscopy (EIS) was used to characterize the modified gold microelectrodes. The BioMEMS was highly sensitive towards the three cytokines in a range of 1 pg/mL to 15 pg/mL, which is the window where acute inflammations were observed

    Multiplexed Frequency Spectrum Analyzer Instrumentation for the Characterization of Multiple QCM-Based Biosensors

    Full text link
    In this contribution, we present novel multiplexed frequency spectrum analyzer instrumentation to extract operational parameters and completely characterize the frequency response of an array of quartz_crystal microbalance sensors. The effectiveness of the proposed instrumentation is proven by experimental measurements over a range of frequencies. © 2007 IEEE

    Hes5 Expression in the Postnatal and Adult Mouse Inner Ear and the Drug-Damaged Cochlea

    Get PDF
    The Notch signaling pathway is known to have multiple roles during development of the inner ear. Notch signaling activates transcription of Hes5, a homologue of Drosophila hairy and enhancer of split, which encodes a basic helix-loop-helix transcriptional repressor. Previous studies have shown that Hes5 is expressed in the cochlea during embryonic development, and loss of Hes5 leads to overproduction of auditory and vestibular hair cells. However, due to technical limitations and inconsistency between previous reports, the precise spatial and temporal pattern of Hes5 expression in the postnatal and adult inner ear has remained unclear. In this study, we use Hes5-GFP transgenic mice and in situ hybridization to report the expression pattern of Hes5 in the inner ear. We find that Hes5 is expressed in the developing auditory epithelium of the cochlea beginning at embryonic day 14.5 (E14.5), becomes restricted to a particular subset of cochlear supporting cells, is downregulated in the postnatal cochlea, and is not present in adults. In the vestibular system, we detect Hes5 in developing supporting cells as early as E12.5 and find that Hes5 expression is maintained in some adult vestibular supporting cells. In order to determine the effect of hair cell damage on Notch signaling in the cochlea, we damaged cochlear hair cells of adult Hes5-GFP mice in vivo using injection of kanamycin and furosemide. Although outer hair cells were killed in treated animals and supporting cells were still present after damage, supporting cells did not upregulate Hes5-GFP in the damaged cochlea. Therefore, absence of Notch-Hes5 signaling in the normal and damaged adult cochlea is correlated with lack of regeneration potential, while its presence in the neonatal cochlea and adult vestibular epithelia is associated with greater capacity for plasticity or regeneration in these tissues; which suggests that this pathway may be involved in regulating regenerative potential

    Effects of DAPT and Atoh1 Overexpression on Hair Cell Production and Hair Bundle Orientation in Cultured Organ of Corti from Neonatal Rats

    Get PDF
    BACKGROUND: In mammals, hair cells do not undergo spontaneous regeneration when they are damaged and result in permanent hearing loss. Previous studies in cultured Organ of Corti dissected from neonatal animals have shown that both DAPT (r-secretase inhibitor in the Notch signal pathway) treatment and Atoh1 overexpression can induce supernumerary hair cells. The effects of simultaneous DAPT treatment and Atoh1 over expression in the cells of cultured Organ of Corti from neonatal rats are still obscure. PRINCIPAL FINDINGS: In this study, we set out to investigate the interaction of DAPT treatment and Atoh1 overexpression as well as culture time and the location of basilar fragment isolated form neonatal rat inner ear. Our results showed that DAPT treatment induced more hair cells in the apical turn, while Atoh1 overexpression induced more extra hair cells in the middle turn of the cultured Organ of Corti. When used together, their effects are additive but not synergistic. In addition, the induction of supernumerary hair cells by both DAPT and Atoh1 overexpression is dependent on the treatment time and the location of the cochlear tissue. Moreover, DAPT treatment causes dramatic changes in the orientation of the stereociliary bundles of hair cells, whereas Atoh1 overexpression didn't induce drastic change of the polarity of stereociliary bundles. CONCLUSIONS/SIGNIFICANCE: Taken together, these results suggest that DAPT treatment are much more potent in inducing supernumerary hair cells than Atoh1 overexpression and that the new hair cells mainly come from the trans-differentiation of supporting cells around hair cells. The orientation change of stereociliary bundle of hair cells may be attributed to the insertion of the newly formed hair cells. The immature hair bundles on the newly formed hair cells may also contribute to the overall chaos of the stereociliary bundle of the sensory epithelia

    Expression of Neurog1 Instead of Atoh1 Can Partially Rescue Organ of Corti Cell Survival

    Get PDF
    In the mammalian inner ear neurosensory cell fate depends on three closely related transcription factors, Atoh1 for hair cells and Neurog1 and Neurod1 for neurons. We have previously shown that neuronal cell fate can be altered towards hair cell fate by eliminating Neurod1 mediated repression of Atoh1 expression in neurons. To test whether a similar plasticity is present in hair cell fate commitment, we have generated a knockin (KI) mouse line (Atoh1KINeurog1) in which Atoh1 is replaced by Neurog1. Expression of Neurog1 under Atoh1 promoter control alters the cellular gene expression pattern, differentiation and survival of hair cell precursors in both heterozygous (Atoh1+/KINeurog1) and homozygous (Atoh1KINeurog1/KINeurog1) KI mice. Homozygous KI mice develop patches of organ of Corti precursor cells that express Neurog1, Neurod1, several prosensory genes and neurotrophins. In addition, these patches of cells receive afferent and efferent processes. Some cells among these patches form multiple microvilli but no stereocilia. Importantly, Neurog1 expressing mutants differ from Atoh1 null mutants, as they have intermittent formation of organ of Corti-like patches, opposed to a complete ‘flat epithelium’ in the absence of Atoh1. In heterozygous KI mice co-expression of Atoh1 and Neurog1 results in change in fate and patterning of some hair cells and supporting cells in addition to the abnormal hair cell polarity in the later stages of development. This differs from haploinsufficiency of Atoh1 (Pax2cre; Atoh1f/+), indicating the effect of Neurog1 expression in developing hair cells. Our data suggest that Atoh1KINeurog1 can provide some degree of functional support for survival of organ of Corti cells. In contrast to the previously demonstrated fate plasticity of neurons to differentiate as hair cells, hair cell precursors can be maintained for a limited time by Neurog1 but do not transdifferentiate as neurons

    Disorganized Innervation and Neuronal Loss in the Inner Ear of Slitrk6-Deficient Mice

    Get PDF
    Slitrks are type I transmembrane proteins that share conserved leucine-rich repeat domains similar to those in the secreted axonal guidance molecule Slit. They also show similarities to Ntrk neurotrophin receptors in their carboxy-termini, sharing a conserved tyrosine residue. Among 6 Slitrk family genes in mammals, Slitrk6 has a unique expression pattern, with strong expression in the sensory epithelia of the inner ear. We generated Slitrk6-knockout mice and investigated the development of their auditory and vestibular sensory organs. Slitrk6-deficient mice showed pronounced reduction in the cochlear innervation. In the vestibule, the innervation to the posterior crista was often lost, reduced, or sometimes misguided. These defects were accompanied by the loss of neurons in the spiral and vestibular ganglia. Cochlear sensory epithelia from Slitrk6-knockout mice have reduced ability in promoting neurite outgrowth of spiral ganglion neurons. Indeed the Slitrk6-deficient inner ear showed a mild but significant decrease in the expression of Bdnf and Ntf3, both of which are essential for the innervation and survival of sensory neurons. In addition, the expression of Ntrk receptors, including their phosphorylated forms was decreased in Slitrk6-knockout cochlea. These results suggest that Slitrk6 promotes innervation and survival of inner ear sensory neurons by regulating the expression of trophic and/or tropic factors including neurotrophins from sensory epithelia

    Does Private Islamic Schooling Promote Terrorism? An Analysis of the Educational Background of Successful American Homegrown Terrorists

    Get PDF
    Some commentators argue that private religious schools are less likely to inculcate the attributes of good citizenship than traditional public schools, specifically proposing that private Islamic schools are relatively more likely to produce individuals sympathetic to terrorism. This study offers a preliminary examination of the question by studying the educational backgrounds of Western educated terrorists. While data are limited, in accord with prior work findings indicate the vast majority of both Islamic and reactionary terrorists attended traditional public schools and had no religious education; hence findings suggest that early religious training and identification may actually encourage prosocial behavior
    • …
    corecore