457 research outputs found

    Thermal compression of atomic hydrogen on helium surface

    Full text link
    We describe experiments with spin-polarized atomic hydrogen gas adsorbed on liquid 4^{4}He surface. The surface gas density is increased locally by thermal compression up to 5.5×10125.5\times10^{12} cm−2^{-2} at 110 mK. This corresponds to the onset of quantum degeneracy with the thermal de-Broglie wavelength being 1.5 times larger than the mean interatomic spacing. The atoms were detected directly with a 129 GHz electron-spin resonance spectrometer probing both the surface and the bulk gas. This, and the simultaneous measurement of the recombination power, allowed us to make accurate studies of the adsorption isotherm and the heat removal from the adsorbed hydrogen gas. From the data, we estimate the thermal contact between 2D hydrogen gas and phonons of the helium film. We analyze the limitations of the thermal compression method and the possibility to reach the superfluid transition in 2D hydrogen gas.Comment: 20 pages, 11 figure

    Quantum Theory in Accelerated Frames of Reference

    Get PDF
    The observational basis of quantum theory in accelerated systems is studied. The extension of Lorentz invariance to accelerated systems via the hypothesis of locality is discussed and the limitations of this hypothesis are pointed out. The nonlocal theory of accelerated observers is briefly described. Moreover, the main observational aspects of Dirac's equation in noninertial frames of reference are presented. The Galilean invariance of nonrelativistic quantum mechanics and the mass superselection rule are examined in the light of the invariance of physical laws under inhomogeneous Lorentz transformations.Comment: 25 pages, no figures, contribution to Springer Lecture Notes in Physics (Proc. SR 2005, Potsdam, Germany, February 13 - 18, 2005

    Sum rules and energy scales in the high-temperature superconductor YBa2Cu3O6+x

    Full text link
    The Ferrell-Glover-Tinkham (FGT) sum rule has been applied to the temperature dependence of the in-plane optical conductivity of optimally-doped YBa_2Cu_3O_{6.95} and underdoped YBa_2Cu_3O_{6.60}. Within the accuracy of the experiment, the sum rule is obeyed in both materials. However, the energy scale \omega_c required to recover the full strength of the superfluid \rho_s in the two materials is dramatically different; \omega_c \simeq 800 cm^{-1} in the optimally doped system (close to twice the maximum of the superconducting gap, 2\Delta_0), but \omega_c \gtrsim 5000 cm^{-1} in the underdoped system. In both materials, the normal-state scattering rate close to the critical temperature is small, \Gamma < 2\Delta_0, so that the materials are not in the dirty limit and the relevant energy scale for \rho_s in a BCS material should be twice the energy gap. The FGT sum rule in the optimally-doped material suggests that the majority of the spectral weight of the condensate comes from energies below 2\Delta_0, which is consistent with a BCS material in which the condensate originates from a Fermi liquid normal state. In the underdoped material the larger energy scale may be a result of the non-Fermi liquid nature of the normal state. The dramatically different energy scales suggest that the nature of the normal state creates specific conditions for observing the different aspects of what is presumably a central mechanism for superconductivity in these materials.Comment: RevTeX 4 file, 9 pages with 7 embedded eps figure

    Dust Devil Tracks

    Get PDF
    Dust devils that leave dark- or light-toned tracks are common on Mars and they can also be found on the Earth’s surface. Dust devil tracks (hereinafter DDTs) are ephemeral surface features with mostly sub-annual lifetimes. Regarding their size, DDT widths can range between ∼1 m and ∼1 km, depending on the diameter of dust devil that created the track, and DDT lengths range from a few tens of meters to several kilometers, limited by the duration and horizontal ground speed of dust devils. DDTs can be classified into three main types based on their morphology and albedo in contrast to their surroundings; all are found on both planets: (a) dark continuous DDTs, (b) dark cycloidal DDTs, and (c) bright DDTs. Dark continuous DDTs are the most common type on Mars. They are characterized by their relatively homogenous and continuous low albedo surface tracks. Based on terrestrial and martian in situ studies, these DDTs most likely form when surficial dust layers are removed to expose larger-grained substrate material (coarse sands of ≥500 μm in diameter). The exposure of larger-grained materials changes the photometric properties of the surface; hence leading to lower albedo tracks because grain size is photometrically inversely proportional to the surface reflectance. However, although not observed so far, compositional differences (i.e., color differences) might also lead to albedo contrasts when dust is removed to expose substrate materials with mineralogical differences. For dark continuous DDTs, albedo drop measurements are around 2.5 % in the wavelength range of 550–850 nm on Mars and around 0.5 % in the wavelength range from 300–1100 nm on Earth. The removal of an equivalent layer thickness around 1 μm is sufficient for the formation of visible dark continuous DDTs on Mars and Earth. The next type of DDTs, dark cycloidal DDTs, are characterized by their low albedo pattern of overlapping scallops. Terrestrial in situ studies imply that they are formed when sand-sized material that is eroded from the outer vortex area of a dust devil is redeposited in annular patterns in the central vortex region. This type of DDT can also be found in on Mars in orbital image data, and although in situ studies are lacking, terrestrial analog studies, laboratory work, and numerical modeling suggest they have the same formation mechanism as those on Earth. Finally, bright DDTs are characterized by their continuous track pattern and high albedo compared to their undisturbed surroundings. They are found on both planets, but to date they have only been analyzed in situ on Earth. Here, the destruction of aggregates of dust, silt and sand by dust devils leads to smooth surfaces in contrast to the undisturbed rough surfaces surrounding the track. The resulting change in photometric properties occurs because the smoother surfaces have a higher reflectance compared to the surrounding rough surface, leading to bright DDTs. On Mars, the destruction of surficial dust-aggregates may also lead to bright DDTs. However, higher reflective surfaces may be produced by other formation mechanisms, such as dust compaction by passing dust devils, as this may also cause changes in photometric properties. On Mars, DDTs in general are found at all elevations and on a global scale, except on the permanent polar caps. DDT maximum areal densities occur during spring and summer in both hemispheres produced by an increase in dust devil activity caused by maximum insolation. Regionally, dust devil densities vary spatially likely controlled by changes in dust cover thicknesses and substrate materials. This variability makes it difficult to infer dust devil activity from DDT frequencies. Furthermore, only a fraction of dust devils leave tracks. However, DDTs can be used as proxies for dust devil lifetimes and wind directions and speeds, and they can also be used to predict lander or rover solar panel clearing events. Overall, the high DDT frequency in many areas on Mars leads to drastic albedo changes that affect large-scale weather patterns

    Anemia prevalence in women of reproductive age in low- and middle-income countries between 2000 and 2018

    Get PDF
    Published online: 12 October 2021Anemia is a globally widespread condition in women and is associated with reduced economic productivity and increased mortality worldwide. Here we map annual 2000–2018 geospatial estimates of anemia prevalence in women of reproductive age (15–49 years) across 82 low- and middle-income countries (LMICs), stratify anemia by severity and aggregate results to policy-relevant administrative and national levels. Additionally, we provide subnational disparity analyses to provide a comprehensive overview of anemia prevalence inequalities within these countries and predict progress toward the World Health Organization’s Global Nutrition Target (WHO GNT) to reduce anemia by half by 2030. Our results demonstrate widespread moderate improvements in overall anemia prevalence but identify only three LMICs with a high probability of achieving the WHO GNT by 2030 at a national scale, and no LMIC is expected to achieve the target in all their subnational administrative units. Our maps show where large within-country disparities occur, as well as areas likely to fall short of the WHO GNT, offering precision public health tools so that adequate resource allocation and subsequent interventions can be targeted to the most vulnerable populations.Damaris Kinyoki, Aaron E. Osgood-Zimmerman, Natalia V. Bhattacharjee, Local Burden of Disease Anaemia Collaborators, Nicholas J. Kassebaum, and Simon I. Hay. (Local Burden of Disease Anaemia Collaborators: Lauren E. Schaeffer ...Muktar Beshir Ahmed ... Habtamu Abera Areri ... Dinesh Bhandari ... Tiffany K. Gill ... Jean Jacques Noubiap ... Andrew T. Olagunju ... et al.

    A Pilot Point Guided Pattern Matching Approach to Integrate Dynamic Data into Geological Modeling

    Full text link
    Methods based on multiple-point statistics (MPS) have been routinely used to characterize complex geological formations in the last decade. These methods use the available static data (for example, measured conductivities) for conditioning. Integrating dynamic data (for example, measured transient piezometric head data) into the same framework is challenging because of the complex non-linear relationship between the dynamic response and geology. The Ensemble PATtern (EnPAT) search method was recently developed as a promising technique to handle this problem. In this approach, a pattern is postulated to be composed of both parameter and state variables, and then, parameter values are sequentially (point-wise) simulated by directly sampling the matched pattern from an ensemble of training images of both geologic parameters and state variables. As a consequence, the updated ensemble of realizations of the geological parameters preserve curvilinear structures (i.e., non-multiGaussanity) as well as the complex relationship between static and dynamic data. Moreover, the uncertainty of flow and transport predictions can be assessed using the updated ensemble of geological models. In this work, we further modify the EnPAT method by introducing the pilot-point concept into the algorithm. More specifically, the parameter values at a set of randomly selected pilot point locations are simulated by the pattern searching procedure, and then a faster MPS method is used to complete the simulation by conditioning to the previously simulated pilot point values. This pilot point guided MPS implementation results in lower computational cost and more accurate inference of the parameter field. In addition, in some situations where there is sparsity of measured geologic static data, the EnPAT algorithm is extended to work only with the dynamic data. We employed a synthetic example to demonstrate the effectiveness of pilot points in the implementation of EnPAT, and also the capability of dynamic data to identify complex geologic structures when measured conductivity data are not available.The first three authors gratefully acknowledge the financial support by DOE through project DE-FE0004962. The fourth author acknowledges the financial support by the Spanish Ministry of Science and Innovation through project CGL2011-23295. The authors also wish to thank Wolfgang Nowak as well as two anonymous reviewers for their comments, which helped improving the final version of the manuscript.Li, L.; Srinivasan, S.; Zhou, H.; Gómez-Hernández, JJ. (2013). A Pilot Point Guided Pattern Matching Approach to Integrate Dynamic Data into Geological Modeling. Advances in Water Resources. 62(Part A):125-138. https://doi.org/10.1016/j.advwatres.2013.10.008S12513862Part

    Effects of watershed land use on nitrogen concentrations and δ15 Nitrogen in groundwater

    Get PDF
    Author Posting. © The Authors, 2005. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Biogeochemistry 77 (2006): 199-215, doi:10.1007/s10533-005-1036-2.Eutrophication is a major agent of change affecting freshwater, estuarine, and marine systems. It is largely driven by transportation of nitrogen from natural and anthropogenic sources. Research is needed to quantify this nitrogen delivery and to link the delivery to specific land-derived sources. In this study we measured nitrogen concentrations and δ15N values in seepage water entering three freshwater ponds and six estuaries on Cape Cod, Massachusetts and assessed how they varied with different types of land use. Nitrate concentrations and δ15N values in groundwater reflected land use in developed and pristine watersheds. In particular, watersheds with larger populations delivered larger nitrate loads with higher δ15N values to receiving waters. The enriched δ15N values confirmed nitrogen loading model results identifying wastewater contributions from septic tanks as the major N source. Furthermore, it was apparent that N coastal sources had a relatively larger impact on the N loads and isotopic signatures than did inland N sources further upstream in the watersheds. This finding suggests that management priorities could focus on coastal sources as a first course of action. This would require management constraints on a much smaller population.This work was supported by funds from the Woods Hole Oceanographic Institution Sea Grant Program, from the Cooperative Institute for Coastal and Estuarine Environmental Technology, from Massachusetts Department of Environmental Protection to Applied Science Associates, Narragansett, RI, as well as from Palmer/McLeod and NOAA National Estuarine Research Reserve Fellowships to Kevin Kroeger. This work is the result of research sponsored by NOAA National Sea Grant College Program Office, Department of Commerce, under Grant No. NA86RG0075, Woods Hole Oceanographic Institution Sea Grant Project No. R/M-40

    Nationwide comprehensive gastro-intestinal cancer cohorts: the 3P initiative

    Get PDF
    Background: The increasing sub-classification of cancer patients due to more detailed molecular classification of tumors, and limitations of current trial designs, require innovative research designs. We present the design, governance and current standing of three comprehensive nationwide cohorts including pancreatic, esophageal/gastric, and colorectal cancer patients (NCT02070146). Multidisciplinary collection of clinical data, tumor tissue, blood samples, and patient-reported outcome (PRO) measures with a nationwide coverage, provides the infrastructure for future and novel trial designs and facilitates research to improve outcomes of gastrointestinal cancer patients. Material and methods: All patients aged ≥18 years with pancreatic, esophageal/gastric or colorectal cancer are eligible. Patients provide informed consent for: (1) reuse of clinical data; (2) biobanking of primary tumor tissue; (3) collection of blood samples; (4) to be informed about relevant newly identified genomic aberrations; (5) collection of longitudinal PROs; and (6) to receive information on new interventional studies and possible participation in cohort multiple randomized controlled trials (cmRCT) in the future. Results: In 2015, clinical data of 21,758 newly diagnosed patients were collected in the Netherlands Cancer Registry. Additional clinical data on the surgical procedures were registered in surgical audits for 13,845 patients. Within the first two years, tumor tissue and blood samples were obtained from 1507 patients; during this period, 1180 patients were included in the PRO registry. Response rate for PROs was 90%. The consent rate to receive information on new interventional studies and possible participation in cmRCTs in the future was >85%. The number of hospitals participating in the cohorts is steadily increasing. Conclusion: A comprehensive nationwide multidisciplinary gastrointestinal cancer cohort is feasible and surpasses the limitations of classical study designs. With this initiative, novel and innovative studies can be performed in an efficient, safe, and comprehensive setting
    • …
    corecore