272 research outputs found
Equivalent thermo-mechanical parameters for perfect crystals
Thermo-elastic behavior of perfect single crystal is considered. The crystal
is represented as a set of interacting particles (atoms). The approach for
determination of equivalent continuum values for the discrete system is
proposed. Averaging of equations of particles' motion and long wave
approximation are used in order to make link between the discrete system and
equivalent continuum. Basic balance equations for equivalent continuum are
derived from microscopic equations. Macroscopic values such as Piola and Cauchy
stress tensors and heat flux are represented via microscopic parameters.
Connection between the heat flux and temperature is discussed. Equation of
state in Mie-Gruneisen form connecting Cauchy stress tensor with deformation
gradient and thermal energy is obtained from microscopic considerations.Comment: To be published in proceedings of IUTAM Simposium on "Vibration
Analysis of Structures with Uncertainties", 2009; 14 pages
Tests of the Equivalence Principle with Neutral Kaons
We test the Principle of Equivalence for particles and antiparticles, using
CPLEAR data on tagged K0 and K0bar decays into pi^+ pi^-. For the first time,
we search for possible annual, monthly and diurnal modulations of the
observables |eta_{+-}| and phi_{+-}, that could be correlated with variations
in astrophysical potentials. Within the accuracy of CPLEAR, the measured values
of |eta_{+-}| and phi_{+-} are found not to be correlated with changes of the
gravitational potential. We analyze data assuming effective scalar, vector and
tensor interactions, and we conclude that the Principle of Equivalence between
particles and antiparticles holds to a level of 6.5, 4.3 and 1.8 x 10^{-9},
respectively, for scalar, vector and tensor potentials originating from the Sun
with a range much greater than the distance Earth-Sun. We also study
energy-dependent effects that might arise from vector or tensor interactions.
Finally, we compile upper limits on the gravitational coupling difference
between K0 and K0bar as a function of the scalar, vector and tensor interaction
range.Comment: 15 pages latex 2e, five figures, one style file (cernart.csl)
incorporate
Test of CPT Symmetry and Quantum Mechanics with Experimental data from CPLEAR
We use fits to recent published CPLEAR data on neutral kaon decays to
and to constrain the CPT--violation parameters
appearing in a formulation of the neutral kaon system as an open
quantum-mechanical system. The obtained upper limits of the CPT--violation
parameters are approaching the range suggested by certain ideas concerning
quantum gravity.Comment: 9 pages of uuencoded postscript (includes 3 figures
Black Hole Spin via Continuum Fitting and the Role of Spin in Powering Transient Jets
The spins of ten stellar black holes have been measured using the
continuum-fitting method. These black holes are located in two distinct classes
of X-ray binary systems, one that is persistently X-ray bright and another that
is transient. Both the persistent and transient black holes remain for long
periods in a state where their spectra are dominated by a thermal accretion
disk component. The spin of a black hole of known mass and distance can be
measured by fitting this thermal continuum spectrum to the thin-disk model of
Novikov and Thorne; the key fit parameter is the radius of the inner edge of
the black hole's accretion disk. Strong observational and theoretical evidence
links the inner-disk radius to the radius of the innermost stable circular
orbit, which is trivially related to the dimensionless spin parameter a_* of
the black hole (|a_*| < 1). The ten spins that have so far been measured by
this continuum-fitting method range widely from a_* \approx 0 to a_* > 0.95.
The robustness of the method is demonstrated by the dozens or hundreds of
independent and consistent measurements of spin that have been obtained for
several black holes, and through careful consideration of many sources of
systematic error. Among the results discussed is a dichotomy between the
transient and persistent black holes; the latter have higher spins and larger
masses. Also discussed is recently discovered evidence in the transient sources
for a correlation between the power of ballistic jets and black hole spin.Comment: 30 pages. Accepted for publication in Space Science Reviews. Also to
appear in hard cover in the Space Sciences Series of ISSI "The Physics of
Accretion onto Black Holes" (Springer Publisher). Changes to Sections 5.2,
6.1 and 7.4. Section 7.4 responds to Russell et al. 2013 (MNRAS, 431, 405)
who find no evidence for a correlation between the power of ballistic jets
and black hole spi
Effects of watershed land use on nitrogen concentrations and ÎŽ15 Nitrogen in groundwater
Author Posting. © The Authors, 2005. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Biogeochemistry 77 (2006): 199-215, doi:10.1007/s10533-005-1036-2.Eutrophication is a major agent of change affecting freshwater, estuarine, and marine
systems. It is largely driven by transportation of nitrogen from natural and anthropogenic
sources. Research is needed to quantify this nitrogen delivery and to link the delivery to
specific land-derived sources. In this study we measured nitrogen concentrations and ÎŽ15N
values in seepage water entering three freshwater ponds and six estuaries on Cape Cod,
Massachusetts and assessed how they varied with different types of land use. Nitrate
concentrations and ÎŽ15N values in groundwater reflected land use in developed and pristine
watersheds. In particular, watersheds with larger populations delivered larger nitrate loads with
higher ÎŽ15N values to receiving waters. The enriched ÎŽ15N values confirmed nitrogen loading
model results identifying wastewater contributions from septic tanks as the major N source.
Furthermore, it was apparent that N coastal sources had a relatively larger impact on the N
loads and isotopic signatures than did inland N sources further upstream in the watersheds.
This finding suggests that management priorities could focus on coastal sources as a first
course of action. This would require management constraints on a much smaller population.This work was supported
by funds from the Woods Hole Oceanographic Institution Sea Grant Program, from the
Cooperative Institute for Coastal and Estuarine Environmental Technology, from
Massachusetts Department of Environmental Protection to Applied Science Associates,
Narragansett, RI, as well as from Palmer/McLeod and NOAA National Estuarine Research
Reserve Fellowships to Kevin Kroeger. This work is the result of research sponsored by NOAA
National Sea Grant College Program Office, Department of Commerce, under Grant No.
NA86RG0075, Woods Hole Oceanographic Institution Sea Grant Project No. R/M-40
America's Rural Hospitals: A Selective Review of 1980s Research
We review 1980s research on American rural hospitals within the context of a decade of increasing restrictiveness in the reimbursement and operating environments. Areas addressed include rural hospital definitions, organizational and financial performance, and strategic management activities. The latter category consists of hospital closure, diversification and vertical integration, swing-bed conversion, sole community provider designation, horizontal integration and multihospital system affiliation, marketing, and patient retention. The review suggests several research needs, including: developing more meaningful definitions of rural hospitals, engaging in methodologically sound work on the effects of innovative programs and strategic management activitiesâincluding conversion of the facility itselfâon rural hospital performance, and completing studies of the effects of rural hospital closure or conversion on the health of the communities served.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74857/1/j.1748-0361.1990.tb00682.x.pd
Experimental tests of CPT symmetry and quantum mechanics at CPLEAR
We review a phenomenological parametrization of an open quantum-mechanical formalism for CPT violation in the neutral kaon system, and constrain the parameters using fits to recent CPLEAR data.We review a phenomenological parametrization of an open quantum-mechanical formalism for CPT violation in the neutral kaon system, and constrain the parameters using fits to recent CPLEAR data
Experimental tests of CPT symmetry and quantum mechanics at CPLEAR
We review a phenomenological parametrization of an open quantum-mechanical formalism for CPT violation in the neutral kaon system, and constrain the parameters using fits to recent CPLEAR data
The CPLEAR detector at CERN
The CPLEAR collaboration has constructed a detector at CERN for an extensive programme of CP-, T- and CPT-symmetry studies using and produced by the annihilation of 's in a hydrogen gas target. The and are identified by their companion products of the annihilation which are tracked with multiwire proportional chambers, drift chambers and streamer tubes. Particle identification is carried out with a liquid Cherenkov detector for fast separation of pions and kaons and with scintillators which allow the measurement of time of flight and energy loss. Photons are measured with a lead/gas sampling electromagnetic calorimeter. The required antiproton annihilation modes are selected by fast online processors using the tracking chamber and particle identification information. All the detectors are mounted in a 0.44 T uniform field of an axial solenoid of diameter 2 m and length 3.6 m to form a magnetic spectrometer capable of full on-line reconstruction and selection of events. The design, operating parameters and performance of the sub-detectors are described.
- âŠ