1,106 research outputs found
Recommended from our members
Complex refractive index, single scattering albedo, and mass absorption coefficient of secondary organic aerosols generated from oxidation of biogenic and anthropogenic precursors
Refractive index and optical properties of biogenic and anthropogenic secondary organic aerosol (SOA) particles were investigated. Aerosol precursors, namely longifolene, α-pinene, 1-methylnaphthalene, phenol, and toluene were oxidized in a Teflon chamber to produce SOA particles under different initial hydrocarbon concentrations and hydroxyl radical sources, reflecting exposures to different levels of nitrogen oxides (NOx). The real and imaginary components (n and k, respectively) of the refractive index at 375 nm and 632 nm were determined by Mie theory calculations through an iterative process, using the χ2 function to evaluate the fitness of the predicted optical parameters with the measured scattering, absorption, and extinction coefficients from a Photoacoustic Extinctiometer and Cavity Attenuated Phase Shift Spectrometer. Single scattering albedo (SSA) and bulk mass absorption coefficient (MAC) at 375 nm were calculated. SSA values of SOA particles from biogenic precursors (longifolene and α-pinene) were ∼0.98–0.99 (∼6.3% uncertainty), reflecting purely scattering aerosols regardless of the NOx regime. However, SOA particles from aromatic precursors were more absorbing and displayed NOx-dependent SSA values. For 1-methylnaphthalene SOA particles, SSA values of 0.92–0.95 and ∼0.75–0.90 (∼6.1% uncertainty) were observed under intermediate- and high-NOx conditions, respectively, reflecting the absorbing effects of SOA particles and NOx chemistry for this aromatic system. In mixtures of longifolene and phenol or longifolene and toluene SOA under intermediate- and high-NOx conditions, k values of the aromatic-related component of the SOA mixture were higher than that of 1-methylnaphthalene SOA particles. With the increase in OH exposure, kphenol decreased from 0.10 to 0.02 and 0.22 to 0.05 for intermediate- and high-NOx conditions, respectively. A simple relative radiative forcing calculation for urban environments at λ = 375 nm suggests the influence of absorbing SOA particles on relative radiative forcing at this wavelength is most significant for aerosol sizes greater than 0.4 µm. Copyright © 2019 American Association for Aerosol Research</p
A study of the question of equal access as it applies to the courts and legislative bodies
Thesis (M.S.)--Boston Universit
Centrosome-intrinsic mechanisms modulate centrosome integrity during fever
The centrosome is critical for cell division, ciliogenesis, membrane trafficking, and immunological synapse function. The immunological synapse is part of the immune response, which is often accompanied by fever/heat stress (HS). Here we provide evidence that HS causes deconstruction of all centrosome substructures primarily through degradation by centrosome-associated proteasomes. This renders the centrosome nonfunctional. Heat-activated degradation is centrosome selective, as other nonmembranous organelles (midbody, kinetochore) and membrane-bounded organelles (mitochondria) remain largely intact. Heat-induced centrosome inactivation was rescued by targeting Hsp70 to the centrosome. In contrast, Hsp70 excluded from the centrosome via targeting to membranes failed to rescue, as did chaperone inactivation. This indicates that there is a balance between degradation and chaperone rescue at the centrosome after HS. This novel mechanism of centrosome regulation during fever contributes to immunological synapse formation. Heat-induced centrosome inactivation is a physiologically relevant event, as centrosomes in leukocytes of febrile patients are disrupted. Cell Biology under license from the author(s)
Impaired Bone Formation in Transgenic Mice Resulting from Altered Integrin Function in Osteoblasts
AbstractTo determine the role of integrins in mature osteoblasts in vivo, we expressed in transgenic mice a dominant-negative integrin subunit (β1-DN) consisting of the β1 subunit cytoplasmic and transmembrane domains, driven by the osteoblast-specific osteocalcin promoter. Immature osteoblasts isolated from transgenic animals differentiated normally in vitro until the osteocalcin promoter became active; thereafter they detached from the substratum, suggesting that β1-DN was impairing adhesion in mature osteoblasts. Transgenic animals had reduced bone mass, with increased cortical porosity in long bones and thinner flat bones in the skull. At 35 days, the rate of bone formation was reduced in cortical bone, and the parietal bones were 45% thinner than in wild-type animals. Active osteoblasts were less polar and had larger areas of cytoplasm with intracellular stores of matrix molecules. Osteocyte lacunae appeared normal around the cell body but did not have normal canilicular structures. At 90 days, the parietal bone of transgenic males was of normal width, suggesting that the original defect in matrix deposition had been repaired or compensated for. In contrast, transgenic females still had decreased bone mass in the parietal bone at 90 days. The decreased bone mass in TG females was accompanied by increased staining for osteoclast activity, suggesting that there was a sex-specific defect in mature animals
Isolation of the ALG6 locus of Saccharomyces cerevisiae required for glucosylation in the N-linked glycosylation pathway
N-Linked protein glycosylation in most eukaryotic cells initiates with the transfer of the oligosaccharide Glc3Man9GlcNAc2 from the lipid carrier dolichyl pyrophosphate to selected asparagine residues. In the yeast Saccharomyces cerevisiae, alg mutations which affect the assembly of the lipid-linked oligosaccharide at the membrane of the endoplasmic reticulum result in the accumulation of lipid-linked oligosaccharide intermediates and a hypoglycosylation of proteins. Exploiting the synthetic growth defect of alg mutations in combination with mutations affecting oligosaccharyl transferase activity (Stagljar et al., 1994), we have isolated the ALG6 locus. alg6 mutants accumulate lipid-linked Man9GlcNAc2, suggesting that this locus encodes an endoplasmic glucosyltransferase. Alg6p has sequence similarity to Alg8p, a protein required for glucosylation of Glc1Man9GlcNAc
Conserved currents for Kerr and orthogonality of quasinormal modes
We introduce a bilinear form for Weyl scalar perturbations of Kerr. The form
is symmetric and conserved, and we show that, when combined with a suitable
renormalization prescription involving complex r integration contours,
quasinormal modes are orthogonal in the bilinear form for different (l, m, n).
These properties are apparently not evident consequences of standard properties
for the radial and angular solutions to the decoupled Teukolsky relations and
rely on the Petrov type D character of Kerr and its t- reflection
isometry. We show that quasinormal mode excitation coefficients are given
precisely by the projection with respect to our bilinear form. These properties
can make our bilinear form useful to set up a framework for nonlinear
quasinormal mode coupling in Kerr. We also provide a general discussion on
conserved local currents and their associated local symmetry operators for
metric and Weyl perturbations, identifying a collection containing an
increasing number of derivatives.Comment: 14+11 pages, 2 figures. minor changes to match version accepted to
PR
- …