408 research outputs found
Shaped Pupil Lyot Coronagraphs: High-Contrast Solutions for Restricted Focal Planes
Coronagraphs of the apodized pupil and shaped pupil varieties use the
Fraunhofer diffraction properties of amplitude masks to create regions of high
contrast in the vicinity of a target star. Here we present a hybrid coronagraph
architecture in which a binary, hard-edged shaped pupil mask replaces the gray,
smooth apodizer of the apodized pupil Lyot coronagraph (APLC). For any contrast
and bandwidth goal in this configuration, as long as the prescribed region of
contrast is restricted to a finite area in the image, a shaped pupil is the
apodizer with the highest transmission. We relate the starlight cancellation
mechanism to that of the conventional APLC. We introduce a new class of
solutions in which the amplitude profile of the Lyot stop, instead of being
fixed as a padded replica of the telescope aperture, is jointly optimized with
the apodizer. Finally, we describe shaped pupil Lyot coronagraph (SPLC) designs
for the baseline architecture of the Wide-Field Infrared Survey
Telescope-Astrophysics Focused Telescope Assets (WFIRST-AFTA) coronagraph.
These SPLCs help to enable two scientific objectives of the WFIRST-AFTA
mission: (1) broadband spectroscopy to characterize exoplanet atmospheres in
reflected starlight and (2) debris disk imaging.Comment: 41 pages, 15 figures; published in the JATIS special section on
WFIRST-AFTA coronagraph
Exoplanet Detection Synenergy Between Gaia and the WFIRST Coronagraph
Future astrometric detections of exoplanets from the Gaia mission will augment and improve the sample of targets accessible to the Coronagraph Instrument (CGI) on WFIRST. We assessed the joint detection sensitivity of Gaia and WFIRST by modeling random planet populations around nearby (d less than 20 pc), bright (V less than 6) stars, and applying nominal detection thresholds for each mission. Our analysis suggests that only a small number of the new planet detections from Gaia will be favorable for spectroscopic characterization by WFIRST CGI: 1-3 planets, depending on the assumed planet population model. The target stars hosting gas giants detectable to both missions tend to be GK dwarfs with brightness between V = 3-5, and distances within 10 pc. While few in number, these new Gaia-detected exoplanets could be exceptionally valuable targets for WFIRST due to the ability to incorporate astrometric mass estimates into the spectral retrieval of atmospheric parameters
Finding the Needles in the Haystacks: High-Fidelity Models of the Modern and Archean Solar System for Simulating Exoplanet Observations
We present two state-of-the-art models of the solar system, one corresponding
to the present day and one to the Archean Eon 3.5 billion years ago. Each model
contains spatial and spectral information for the star, the planets, and the
interplanetary dust, extending to 50 AU from the sun and covering the
wavelength range 0.3 to 2.5 micron. In addition, we created a spectral image
cube representative of the astronomical backgrounds that will be seen behind
deep observations of extrasolar planetary systems, including galaxies and Milky
Way stars. These models are intended as inputs to high-fidelity simulations of
direct observations of exoplanetary systems using telescopes equipped with
high-contrast capability. They will help improve the realism of observation and
instrument parameters that are required inputs to statistical observatory yield
calculations, as well as guide development of post-processing algorithms for
telescopes capable of directly imaging Earth-like planets.Comment: Accepted for publication in PAS
Simulating the WFIRST coronagraph Integral Field Spectrograph
A primary goal of direct imaging techniques is to spectrally characterize the
atmospheres of planets around other stars at extremely high contrast levels. To
achieve this goal, coronagraphic instruments have favored integral field
spectrographs (IFS) as the science cameras to disperse the entire search area
at once and obtain spectra at each location, since the planet position is not
known a priori. These spectrographs are useful against confusion from speckles
and background objects, and can also help in the speckle subtraction and
wavefront control stages of the coronagraphic observation. We present a
software package, the Coronagraph and Rapid Imaging Spectrograph in Python
(crispy) to simulate the IFS of the WFIRST Coronagraph Instrument (CGI). The
software propagates input science cubes using spatially and spectrally resolved
coronagraphic focal plane cubes, transforms them into IFS detector maps and
ultimately reconstructs the spatio-spectral input scene as a 3D datacube.
Simulated IFS cubes can be used to test data extraction techniques, refine
sensitivity analyses and carry out design trade studies of the flight CGI-IFS
instrument. crispy is a publicly available Python package and can be adapted to
other IFS designs.Comment: 15 page
The Roman exoplanet Imaging data challenge: a major community engagement effort
Organized by the Turnbull Science Investigation Team (SIT), the 2019-2020 Roman Exoplanet Imaging Data Challenge (EIDC) launched in mid October 2019 and ran for eight months. This data challenge was a unique opportunity for exoplanet scientists of all backgrounds and experience levels to get acquainted with realistic Roman CGI (coronagraphic) simulated data with a new contrast regimes at 10-8 to 10-9 enabling to unveil planets down to the Neptune-mass in reflected light. Participating teams had to recover the astrometry of an exoplanetary system combining precursor radial velocity data (also simulated across 15 years) with two to six coronagraphic imaging epochs (HLC and Star Shade). They had to perform accurate orbital fitting and determine the mass of any planet hidden in the data. It involved PSF subtraction techniques, post-processing and other astrophysics hurdles to overcome such as contamination sources (stellar, extragalactic and exozodiacal light). We organized four tutorial "hack-a-thon" events to get as many people on-board. The EIDC proved to be an excellent way to engage with the intricacies of the first mission to perform wavefront control in space, as a pathfinder to future flagship missions. It also generated a lot of positive interactions between open source package owners and a whole new set of young exoplanet scientists running them. As a community we are a few steps closer to being ready to analyze real CGI data
APLC-Optimization: an apodized pupil Lyot coronagraph design survey toolkit
We present a publicly available software package developed for exploring
apodized pupil Lyot coronagraph (APLC) solutions for various telescope
architectures. In particular, the package optimizes the apodizer component of
the APLC for a given focal-plane mask and Lyot stop geometry to meet a set of
constraints (contrast, bandwidth etc.) on the coronagraph intensity in a given
focal-plane region (i.e. dark zone). The package combines a high-contrast
imaging simulation package HCIPy with a third-party mathematical optimizer
(Gurobi) to compute the linearly optimized binary mask that maximizes
transmission. We provide examples of the application of this toolkit to several
different telescope geometries, including the Gemini Planet Imager (GPI) and
the High-contrast imager for Complex Aperture Telescopes (HiCAT) testbed.
Finally, we summarize the results of a preliminary design survey for the case
of a 6~m aperture off-axis space telescope, as recommended by the 2020 NASA
Decadal Survey, exploring APLC solutions for different segment sizes. We then
use the Pair-based Analytical model for Segmented Telescope Imaging from Space
(PASTIS) to perform a segmented wavefront error tolerancing analysis on these
solutions.Comment: 17 pages, 16 figures, SPIE conferenc
- …