The Roman exoplanet Imaging data challenge: a major community engagement effort

Abstract

Organized by the Turnbull Science Investigation Team (SIT), the 2019-2020 Roman Exoplanet Imaging Data Challenge (EIDC) launched in mid October 2019 and ran for eight months. This data challenge was a unique opportunity for exoplanet scientists of all backgrounds and experience levels to get acquainted with realistic Roman CGI (coronagraphic) simulated data with a new contrast regimes at 10-8 to 10-9 enabling to unveil planets down to the Neptune-mass in reflected light. Participating teams had to recover the astrometry of an exoplanetary system combining precursor radial velocity data (also simulated across 15 years) with two to six coronagraphic imaging epochs (HLC and Star Shade). They had to perform accurate orbital fitting and determine the mass of any planet hidden in the data. It involved PSF subtraction techniques, post-processing and other astrophysics hurdles to overcome such as contamination sources (stellar, extragalactic and exozodiacal light). We organized four tutorial "hack-a-thon" events to get as many people on-board. The EIDC proved to be an excellent way to engage with the intricacies of the first mission to perform wavefront control in space, as a pathfinder to future flagship missions. It also generated a lot of positive interactions between open source package owners and a whole new set of young exoplanet scientists running them. As a community we are a few steps closer to being ready to analyze real CGI data

    Similar works