117 research outputs found
Erratum to: Adrenal cortex expression quantitative trait loci in a German Holstein × Charolais cross
BACKGROUND:
The importance of the adrenal gland in regard to lactation and reproduction in cattle has been recognized early. Caused by interest in animal welfare and the impact of stress on economically important traits in farm animals the adrenal gland and its function within the stress response is of increasing interest. However, the molecular mechanisms and pathways involved in stress-related effects on economically important traits in farm animals are not fully understood. Gene expression is an important mechanism underlying complex traits, and genetic variants affecting the transcript abundance are thought to influence the manifestation of an expressed phenotype. We therefore investigated the genetic background of adrenocortical gene expression by applying an adaptive linear rank test to identify genome-wide expression quantitative trait loci (eQTL) for adrenal cortex transcripts in cattle.
RESULTS:
A total of 10,986 adrenal cortex transcripts and 37,204 single nucleotide polymorphisms (SNPs) were analysed in 145 F2 cows of a Charolais × German Holstein cross. We identified 505 SNPs that were associated with the abundance of 129 transcripts, comprising 482 cis effects and 17 trans effects. These SNPs were located on all chromosomes but X, 16, 24 and 28. Associated genes are mainly involved in molecular and cellular functions comprising free radical scavenging, cellular compromise, cell morphology and lipid metabolism, including genes such as CYP27A1 and LHCGR that have been shown to affect economically important traits in cattle.
CONCLUSIONS:
In this study we showed that adrenocortical eQTL affect the expression of genes known to contribute to the phenotypic manifestation in cattle. Furthermore, some of the identified genes and related molecular pathways were previously shown to contribute to the phenotypic variation of behaviour, temperament and growth at the onset of puberty in the same population investigated here. We conclude that eQTL analysis appears to be a useful approach providing insight into the molecular and genetic background of complex traits in cattle and will help to understand molecular networks involved
On conformal measures and harmonic functions for group extensions
We prove a Perron-Frobenius-Ruelle theorem for group extensions of
topological Markov chains based on a construction of -finite conformal
measures and give applications to the construction of harmonic functions.Comment: To appear in Proceedings of "New Trends in Onedimensional Dynamics,
celebrating the 70th birthday of Welington de Melo
The Adaptive Gain Integrating Pixel Detector at the European XFEL
The Adaptive Gain Integrating Pixel Detector (AGIPD) is an x-ray imager,
custom designed for the European x-ray Free-Electron Laser (XFEL). It is a
fast, low noise integrating detector, with an adaptive gain amplifier per
pixel. This has an equivalent noise of less than 1 keV when detecting single
photons and, when switched into another gain state, a dynamic range of more
than 10 photons of 12 keV. In burst mode the system is able to store 352
images while running at up to 6.5 MHz, which is compatible with the 4.5 MHz
frame rate at the European XFEL. The AGIPD system was installed and
commissioned in August 2017, and successfully used for the first experiments at
the Single Particles, Clusters and Biomolecules (SPB) experimental station at
the European XFEL since September 2017. This paper describes the principal
components and performance parameters of the system.Comment: revised version after peer revie
A Loss of Function Analysis of Host Factors Influencing Vaccinia virus Replication by RNA Interference
Vaccinia virus (VACV) is a large, cytoplasmic, double-stranded DNA virus that requires complex interactions with host proteins in order to replicate. To explore these interactions a functional high throughput small interfering RNA (siRNA) screen targeting 6719 druggable cellular genes was undertaken to identify host factors (HF) influencing the replication and spread of an eGFP-tagged VACV. The experimental design incorporated a low multiplicity of infection, thereby enhancing detection of cellular proteins involved in cell-to-cell spread of VACV. The screen revealed 153 pro- and 149 anti-viral HFs that strongly influenced VACV replication. These HFs were investigated further by comparisons with transcriptional profiling data sets and HFs identified in RNAi screens of other viruses. In addition, functional and pathway analysis of the entire screen was carried out to highlight cellular mechanisms involved in VACV replication. This revealed, as anticipated, that many pro-viral HFs are involved in translation of mRNA and, unexpectedly, suggested that a range of proteins involved in cellular transcriptional processes and several DNA repair pathways possess anti-viral activity. Multiple components of the AMPK complex were found to act as pro-viral HFs, while several septins, a group of highly conserved GTP binding proteins with a role in sequestering intracellular bacteria, were identified as strong anti-viral VACV HFs. This screen has identified novel and previously unexplored roles for cellular factors in poxvirus replication. This advancement in our understanding of the VACV life cycle provides a reliable knowledge base for the improvement of poxvirus-based vaccine vectors and development of anti-viral theraputics
The SARS-coronavirus-host interactome
Coronaviruses (CoVs) are important human and animal pathogens that induce fatal respiratory, gastrointestinal and neurological disease. The outbreak of the severe acute respiratory syndrome (SARS) in 2002/2003 has demonstrated human vulnerability to (Coronavirus) CoV epidemics. Neither vaccines nor therapeutics are available against human and animal CoVs. Knowledge of host cell proteins that take part in pivotal virus-host interactions could define broad-spectrum antiviral targets. In this study, we used a systems biology approach employing a genome-wide yeast-two hybrid interaction screen to identify immunopilins (PPIA, PPIB, PPIH, PPIG, FKBP1A, FKBP1B) as interaction partners of the CoV non-structural protein 1 (Nsp1). These molecules modulate the Calcineurin/NFAT pathway that plays an important role in immune cell activation. Overexpression of NSP1 and infection with live SARS-CoV strongly increased signalling through the Calcineurin/NFAT pathway and enhanced the induction of interleukin 2, compatible with late-stage immunopathogenicity and long-term cytokine dysregulation as observed in severe SARS cases. Conversely, inhibition of cyclophilins by cyclosporine A (CspA) blocked the replication of CoVs of all genera, including SARS-CoV, human CoV-229E and -NL-63, feline CoV, as well as avian infectious bronchitis virus. Non-immunosuppressive derivatives of CspA might serve as broad-range CoV inhibitors applicable against emerging CoVs as well as ubiquitous pathogens of humans and livestock
Self-productivity and complementarities in human development : evidence from MARS
This paper investigates the role of self-productivity and home resources in capability formation from infancy to adolescence. In addition, we study the complementarities between basic cognitive, motor and noncognitive abilities and social as well as academic achievement. Our data are taken from the Mannheim Study of Children at Risk (MARS), an epidemiological cohort study following the long-term outcome of early risk factors. Results indicate that initial risk conditions cumulate and that differences in basic abilities increase during development. Self-productivity rises in the developmental process and complementarities are evident. Noncognitive abilities promote cognitive abilities and social achievement. There is remarkable stability in the distribution of the economic and socio-emotional home resources during the early life cycle. This is presumably a major reason for the evolution of inequality in human development
Megapixels @ Megahertz -- The AGIPD High-Speed Cameras for the European XFEL
The European XFEL is an extremely brilliant Free Electron Laser Source with a
very demanding pulse structure: trains of 2700 X-Ray pulses are repeated at 10
Hz. The pulses inside the train are spaced by 220 ns and each one contains up
to photons of 12.4 keV, while being fs in length. AGIPD,
the Adaptive Gain Integrating Pixel Detector, is a hybrid pixel detector
developed by DESY, PSI, and the Universities of Bonn and Hamburg to cope with
these properties. It is a fast, low noise integrating detector, with single
photon sensitivity (for keV) and a large dynamic
range, up to photons at 12.4 keV. This is achieved with a charge
sensitive amplifier with 3 adaptively selected gains per pixel. 352 images can
be recorded at up to 6.5 MHz and stored in the in-pixel analogue memory and
read out between pulse trains. The core component of this detector is the AGIPD
ASIC, which consists of pixels of . Control of the ASIC's image acquisition and analogue readout is
via a command based interface. FPGA based electronic boards, controlling ASIC
operation, image digitisation and 10 GE data transmission interface AGIPD
detectors to DAQ and control systems. An AGIPD 1 Mpixel detector has been
installed at the SPB experimental station in August 2017, while a second one is
currently commissioned for the MID endstation. A larger (4 Mpixel) AGIPD
detector and one to employ Hi-Z sensor material to efficiently register photons
up to keV are currently under construction.Comment: submitted to the proceedings of the ULITIMA 2018 conference, to be
published in NIM
Recommended from our members
High density lipoprotein mediates anti-inflammatory transcriptional reprogramming of macrophages via the transcriptional repressor ATF3
High Density Lipoprotein (HDL) mediates reverse cholesterol transport and it is known to be protective against atherosclerosis. In addition, HDL has potent anti-inflammatory properties that may be critical for protection against other inflammatory diseases. The molecular mechanisms of how HDL can modulate inflammation, particularly in immune cells such as macrophages, remain poorly understood. Here we identify the transcriptional repressor ATF3, as an HDL-inducible target gene in macrophages that down-regulates the expression of Toll-like receptor (TLR)-induced pro-inflammatory cytokines. The protective effects of HDL against TLR-induced inflammation were fully dependent on ATF3 in vitro and in vivo. Our findings may explain the broad anti-inflammatory and metabolic actions of HDL and provide the basis for predicting the success of novel HDL-based therapies
The SARS-Coronavirus-Host Interactome: Identification of Cyclophilins as Target for Pan-Coronavirus Inhibitors
Coronaviruses (CoVs) are important human and animal pathogens that induce fatal respiratory, gastrointestinal and neurological disease. The outbreak of the severe acute respiratory syndrome (SARS) in 2002/2003 has demonstrated human vulnerability to (Coronavirus) CoV epidemics. Neither vaccines nor therapeutics are available against human and animal CoVs. Knowledge of host cell proteins that take part in pivotal virus-host interactions could define broad-spectrum antiviral targets. In this study, we used a systems biology approach employing a genome-wide yeast-two hybrid interaction screen to identify immunopilins (PPIA, PPIB, PPIH, PPIG, FKBP1A, FKBP1B) as interaction partners of the CoV non-structural protein 1 (Nsp1). These molecules modulate the Calcineurin/NFAT pathway that plays an important role in immune cell activation. Overexpression of NSP1 and infection with live SARS-CoV strongly increased signalling through the Calcineurin/NFAT pathway and enhanced the induction of interleukin 2, compatible with late-stage immunopathogenicity and long-term cytokine dysregulation as observed in severe SARS cases. Conversely, inhibition of cyclophilins by cyclosporine A (CspA) blocked the replication of CoVs of all genera, including SARS-CoV, human CoV-229E and -NL-63, feline CoV, as well as avian infectious bronchitis virus. Non-immunosuppressive derivatives of CspA might serve as broad-range CoV inhibitors applicable against emerging CoVs as well as ubiquitous pathogens of humans and livestock
- …