28 research outputs found

    Genomes of Gardnerella Strains Reveal an Abundance of Prophages within the Bladder Microbiome

    Get PDF
    Bacterial surveys of the vaginal and bladder human microbiota have revealed an abundance of many similar bacterial taxa. As the bladder was once thought to be sterile, the complex interactions between microbes within the bladder have yet to be characterized. To initiate this process, we have begun sequencing isolates, including the clinically relevant genus Gardnerella. Herein, we present the genomic sequences of four Gardnerella strains isolated from the bladders of women with symptoms of urgency urinary incontinence; these are the first Gardnerella genomes produced from this niche. Congruent to genomic characterization of Gardnerella isolates from the reproductive tract, isolates from the bladder reveal a large pangenome, as well as evidence of high frequency horizontal gene transfer. Prophage gene sequences were found to be abundant amongst the strains isolated from the bladder, as well as amongst publicly available Gardnerella genomes from the vagina and endometrium, motivating an in depth examination of these sequences. Amongst the 39 Gardnerella strains examined here, there were more than 400 annotated prophage gene sequences that we could cluster into 95 homologous groups; 49 of these groups were unique to a single strain. While many of these prophages exhibited no sequence similarity to any lytic phage genome, estimation of the rate of phage acquisition suggests both vertical and horizontal acquisition. Furthermore, bioinformatic evidence indicates that prophage acquisition is ongoing within both vaginal and bladder Gardnerella populations. The abundance of prophage sequences within the strains examined here suggests that phages could play an important role in the species’ evolutionary history and in its interactions within the complex communities found in the female urinary and reproductive tracts

    Cutaneous Burn Injury Modulates Urinary Antimicrobial Peptide Responses and the Urinary Microbiome

    Get PDF
    OBJECTIVES: Characterization of urinary bacterial microbiome and antimicrobial peptides after burn injury to identify potential mechanisms leading to urinary tract infections and associated morbidities in burn patients. DESIGN: Retrospective cohort study using human urine from control and burn subjects. SETTING: University research laboratory. PATIENTS: Burn patients. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Urine samples from catheterized burn patients were collected hourly for up to 40 hours. Control urine was collected from "healthy" volunteers. The urinary bacterial microbiome and antimicrobial peptide levels and activity were compared with patient outcomes. We observed a significant increase in urinary microbial diversity in burn patients versus controls, which positively correlated with a larger percent burn and with the development of urinary tract infection and sepsis postadmission, regardless of age or gender. Urinary psoriasin and β-defensin antimicrobial peptide levels were significantly reduced in burn patients at 1 and 40 hours postadmission. We observed a shift in antimicrobial peptide hydrophobicity and activity between control and burn patients when urinary fractions were tested against Escherichia coli and Enterococcus faecalis urinary tract infection isolates. Furthermore, the antimicrobial peptide activity in burn patients was more effective against E. coli than E. faecalis. Urinary tract infection-positive burn patients with altered urinary antimicrobial peptide activity developed either an E. faecalis or Pseudomonas aeruginosa urinary tract infection, suggesting a role for urinary antimicrobial peptides in susceptibility to select uropathogens. CONCLUSIONS: Our data reveal potential links for urinary tract infection development and several morbidities in burn patients through alterations in the urinary microbiome and antimicrobial peptides. Overall, this study supports the concept that early assessment of urinary antimicrobial peptide responses and the bacterial microbiome may be used to predict susceptibility to urinary tract infections and sepsis in burn patients

    Identification of human CD4+ T cell populations with distinct antitumor activity

    Get PDF
    How naturally arising human CD4+ T helper subsets affect cancer immunotherapy is unclear. We reported that human CD4+CD26high T cells elicit potent immunity against solid tumors. As CD26high T cells are often categorized as TH17 cells for their IL-17 production and high CD26 expression, we posited these populations would have similar molecular properties. Here, we reveal that CD26high T cells are epigenetically and transcriptionally distinct from TH17 cells. Of clinical importance, CD26high and TH17 cells engineered with a chimeric antigen receptor (CAR) regressed large human tumors to a greater extent than enriched TH1 or TH2 cells. Only human CD26high T cells mediated curative responses, even when redirected with a suboptimal CAR and without aid by CD8+ CAR T cells. CD26high T cells cosecreted effector cytokines, produced cytotoxic molecules, and persisted long term. Collectively, our work underscores the promise of CD4+ T cell populations to improve durability of solid tumor therapies

    Post-intervention Status in Patients With Refractory Myasthenia Gravis Treated With Eculizumab During REGAIN and Its Open-Label Extension

    Get PDF
    OBJECTIVE: To evaluate whether eculizumab helps patients with anti-acetylcholine receptor-positive (AChR+) refractory generalized myasthenia gravis (gMG) achieve the Myasthenia Gravis Foundation of America (MGFA) post-intervention status of minimal manifestations (MM), we assessed patients' status throughout REGAIN (Safety and Efficacy of Eculizumab in AChR+ Refractory Generalized Myasthenia Gravis) and its open-label extension. METHODS: Patients who completed the REGAIN randomized controlled trial and continued into the open-label extension were included in this tertiary endpoint analysis. Patients were assessed for the MGFA post-intervention status of improved, unchanged, worse, MM, and pharmacologic remission at defined time points during REGAIN and through week 130 of the open-label study. RESULTS: A total of 117 patients completed REGAIN and continued into the open-label study (eculizumab/eculizumab: 56; placebo/eculizumab: 61). At week 26 of REGAIN, more eculizumab-treated patients than placebo-treated patients achieved a status of improved (60.7% vs 41.7%) or MM (25.0% vs 13.3%; common OR: 2.3; 95% CI: 1.1-4.5). After 130 weeks of eculizumab treatment, 88.0% of patients achieved improved status and 57.3% of patients achieved MM status. The safety profile of eculizumab was consistent with its known profile and no new safety signals were detected. CONCLUSION: Eculizumab led to rapid and sustained achievement of MM in patients with AChR+ refractory gMG. These findings support the use of eculizumab in this previously difficult-to-treat patient population. CLINICALTRIALSGOV IDENTIFIER: REGAIN, NCT01997229; REGAIN open-label extension, NCT02301624. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that, after 26 weeks of eculizumab treatment, 25.0% of adults with AChR+ refractory gMG achieved MM, compared with 13.3% who received placebo

    Gene Expression Changes in Peripheral Blood Mononuclear Cells during Measles Virus Infection▿ ‡

    No full text
    Measles virus continues to cause morbidity and mortality despite the existence of a safe and efficacious vaccine. Measles is associated with induction of both a long-lived protective immune response and immunosuppression. To gain insight into immunological changes during measles virus infection, we examined gene expression in blood mononuclear cells from children with acute measles and children in the convalescent phase compared to uninfected control children. There were 13 significantly upregulated and 206 downregulated genes. Upregulated genes included the immune regulatory molecules interleukin 1β (IL-1β), CIAS-1, tumor necrosis factor alpha, PDE4B, PTGS2, IL-8, CXCL2, CCL4, ICAM-1, CD83, GOS-2, IER3 (IEX-1), and TNFAIP3 (A20). Plasma levels of IL-1β and IL-8 were elevated during measles virus infection. Downregulated genes mainly involved three gene ontology biological processes, transcription, signal transduction, and the immune response, and included IL-16 and cell surface receptors IL-4R, IL-6R, IL-7R, IL-27RA, CCR2, and CCR7. Most mRNAs had not returned to control values 1 month after discharge, consistent with prolonged immune response abnormalities during measles virus infection
    corecore