104 research outputs found
Atlantic Ocean Heat Transport Enabled by Indo-Pacific Heat Uptake and Mixing
The ocean transports vast amounts of heat around the planet, helping to regulate regional climate. One important component of this heat transport is the movement of warm water from equatorial regions toward the poles, with colder water flowing in return. Here, we introduce a framework relating meridional heat transport to the diabatic processes of surface forcing and turbulent mixing that move heat across temperature classes. Applied to a (1/4)° global ocean model the framework highlights the role of the tropical Indo‐Pacific in the global ocean heat transport. A large fraction of the northward heat transport in the Atlantic is ultimately sourced from heat uptake in the eastern tropical Pacific. Turbulent mixing moves heat from the warm, shallow Indo‐Pacific circulation to the cold deeper‐reaching Atlantic circulation. Our results underscore a renewed focus on the tropical oceans and their role in global circulation pathways
Changing water cycle and freshwater transports in the Atlantic Ocean in observations and CMIP5 models
Observations over the last 40 years show that the Atlantic Ocean salinity pattern has amplified, likely in response to changes in the atmospheric branch of the global water cycle. Observational estimates of oceanic meridional freshwater transport (FWT) at 26.5° N indicate a large increase over the last few decades, during an apparent decrease in the Atlantic Meridional Overturning Circulation (AMOC). However, there is limited observation based information at other latitudes. The relative importance of changing FWT divergence in these trends remains uncertain. Ten models from the Coupled Model Intercomparison Project Phase 5 are analysed for AMOC, FWT, water cycle, and salinity changes over 1950–2100. Over this timescale, strong trends in the water cycle and oceanic freshwater transports emerge, a part of anthropogenic climate change. Results show that as the water cycle amplifies with warming, FWT strengthens (more southward freshwater transport) throughout the Atlantic sector over the 21st century. FWT strengthens in the North Atlantic subtropical region in spite of declining AMOC, as the long-term trend is dominated by salinity change. The AMOC decline also induces a southward shift of the Inter-Tropical Convergence Zone and a dipole pattern of precipitation change over the tropical region. The consequent decrease in freshwater input north of the equator together with increasing net evaporation lead to strong salinification of the North Atlantic sub-tropical region, enhancing net northward salt transport. This opposes the influence of further AMOC weakening and results in intensifying southward freshwater transports across the entire Atlantic
Global water cycle amplifying at less than the Clausius-Clapeyron rate
A change in the cycle of water from dry to wet regions of the globe would have far reaching impact on humanity. As air warms, its capacity to hold water increases at the Clausius-Clapeyron rate (CC, approximately 7% °C−1). Surface ocean salinity observations have suggested the water cycle has amplified at close to CC following recent global warming, a result that was found to be at odds with state-of the art climate models. Here we employ a method based on water mass transformation theory for inferring changes in the water cycle from changes in three-dimensional salinity. Using full depth salinity observations we infer a water cycle amplification of 3.0 ± 1.6% °C−1 over 1950–2010. Climate models agree with observations in terms of a water cycle amplification (4.3 ± 2.0% °C−1) substantially less than CC adding confidence to projections of total water cycle change under greenhouse gas emission scenarios
The imprint of Southern Ocean overturning on seasonal water mass variability in Drake Passage
Seasonal changes in water mass properties are discussed in thermohaline coordinates from a seasonal climatology and repeat hydrographic sections. The SR1b CTD transects along Drake Passage are used as a case study. The amount of water within temperature and salinity classes and changes therein are used to estimate dia-thermal and dia-haline transformations. These transformations are considered in combination with climatologies of surface buoyancy flux to determine the relative contributions of surface buoyancy fluxes and subsurface mixing to changes in the distribution of water in thermohaline coordinates. The framework developed provides unique insights into the thermohaline circulation of the water masses that are present within Drake Passage, including the erosion of Antarctic Winter Water (AAWW) during the summer months and the interaction between the Circumpolar Deep Waters (CDW) and Antarctic Intermediate Water (AAIW). The results presented are consistent with summertime wind-driven inflation of the CDW layer and deflation of the AAIW layer, and with new AAIW produced in the winter as a mixture of CDW, remnant AAWW, and surface waters. This analysis therefore highlights the role of surface buoyancy fluxes in the Southern Ocean overturning
Atlantic Ocean Heat Transport Enabled by Indo-Pacific Heat Uptake and Mixing
The ocean transports vast amounts of heat around the planet, helping to regulate regional climate. One important component of this heat transport is the movement of warm water from equatorial regions toward the poles, with colder water flowing in return. Here, we introduce a framework relating meridional heat transport to the diabatic processes of surface forcing and turbulent mixing that move heat across temperature classes. Applied to a (1/4)° global ocean model the framework highlights the role of the tropical Indo‐Pacific in the global ocean heat transport. A large fraction of the northward heat transport in the Atlantic is ultimately sourced from heat uptake in the eastern tropical Pacific. Turbulent mixing moves heat from the warm, shallow Indo‐Pacific circulation to the cold deeper‐reaching Atlantic circulation. Our results underscore a renewed focus on the tropical oceans and their role in global circulation pathways
Maintenance and broadening of the ocean’s salinity distribution by the water cycle
The global water cycle leaves an imprint on ocean salinity through evaporation and precipitation. It has been proposed that observed changes in salinity can be used to infer changes in the water cycle. Here salinity is characterized by the distribution of water masses in salinity coordinates. Only mixing and sources and sinks of freshwater and salt can modify this distribution. Mixing acts to collapse the distribution, making saline waters fresher and fresh waters more saline. Hence, in steady state, there must be net precipitation over fresh waters and net evaporation over saline waters. A simple model is developed to describe the relationship between the breadth of the distribution, the water cycle, and mixing—the latter being characterized by an e-folding time scale. In both observations and a state-of-the-art ocean model, the water cycle maintains a salinity distribution in steady state with a mixing time scale of the order of 50 yr. The same simple model predicts the response of the salinity distribution to a change in the water cycle. This study suggests that observations of changes in ocean salinity could be used to infer changes in the hydrological cycle
A regional thermohaline inverse method for estimating circulation and mixing in the Arctic and subpolar North Atlantic
A Regional Thermohaline Inverse Method (RTHIM) is presented that estimates velocities through the section bounding an enclosed domain and transformation rates due to interior mixing within the domain, given inputs of surface boundary fluxes of heat and salt and interior distributions of salinity and temperature. The method works by invoking a volumetric balance in thermohaline coordinates between the transformation due to mixing, surface fluxes and advection, while constraining the mixing to be down tracer gradients. The method is validated using a 20-year mean of outputs from the NEMO model in an Arctic and subpolar North Atlantic domain, bound to the south by a section with a mean latitude of 66°N. RTHIM solutions agree well with the NEMO model ‘truth’ and are robust to a range of parameters; the MOC, heat and freshwater transports calculated from an ensemble of RTHIM solutions are within 12%, 10% and 19%, respectively, of the NEMO values. There is also bulk agreement between RTHIM solution transformation rates due to mixing and those diagnosed from NEMO. Localized differences in diagnosed mixing may be used to guide the development of mixing parameterizations in models such as NEMO, whose downgradient diffusive closures with prescribed diffusivity may be considered oversimplified and too restrictive
Changes in ocean vertical heat transport with global warming
Heat transport between the surface and deep ocean strongly influences transient climate change. Mechanisms setting this transport are investigated using coupled climate models and by projecting ocean circulation into the temperature-depth diagram. In this diagram, a “cold cell” cools the deep ocean through the downwelling of Antarctic waters and upwelling of warmer waters and is balanced by warming due to a “warm cell,” coincident with the interhemispheric overturning and previously linked to wind and haline forcing. With anthropogenic warming, the cold cell collapses while the warm cell continues to warm the deep ocean. Simulations with increasingly strong warm cells, set by their mean Southern Hemisphere winds, exhibit increasing deep-ocean warming in response to the same anthropogenic forcing. It is argued that the partition between components of the circulation which cool and warm the deep ocean in the preindustrial climate is a key determinant of ocean vertical heat transport with global warming
High-latitude ocean ventilation and its role in Earth's climate transitions
The processes regulating ocean ventilation at high latitudes are re-examined based on a range of observations spanning all scales of ocean circulation, from the centimetre scales of turbulence to the basin scales of gyres. It is argued that high-latitude ocean ventilation is controlled by mechanisms that differ in fundamental ways from those that set the overturning circulation. This is contrary to the assumption of broad equivalence between the two that is commonly adopted in interpreting the role of the high-latitude oceans in Earth's climate transitions. Illustrations of how recognizing this distinction may change our view of the ocean's role in the climate system are offered
The thermodynamic balance of the Weddell Gyre
The thermodynamic balance of the Weddell Gyre is assessed from an inverse estimate of the circulation across the gyre's rim. The gyre experiences a weak net buoyancy gain that arises from a leading-order cancellation between two opposing contributions, linked to two cells of water mass transformation and diapycnal overturning. The lower cell involves a cooling-driven densification of 8.4 ± 2.0 Sv of Circumpolar Deep Water and Antarctic Bottom Water near the gyre's southern and western margins. The upper cell entails a freshening-driven conversion of 4.9 ± 2.0 Sv of Circumpolar Deep Water into lighter upper-ocean waters within the gyre interior. The distinct role of salinity between the two cells stems from opposing salinity changes induced by sea ice production, meteoric sources and admixture of fresh upper-ocean waters in the lower cell, which contrasts with coherent reductions in salinity associated with sea ice melting and meteoric sources in the upper cell
- …